首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of defect-core on the birefringence and confinement losses of rectangular-lattice photonic crystal fibers are investigated numerically by applying the multipole method. Numerical results illustrate that the birefringence in such fibers is determined not only by the arrangement of air holes in the cladding but also the shape of the core. It is found that asymmetry of the core represented by its rectangular shape implies a higher effective index of the mode that is parallel with the longer side of the rectangle, whereas the anisotropic rectangular-lattice cladding gives rise to just the opposite effect and thus the resulting birefringence can be controlled by a proper combinations of both mechanisms. In particular, effect of the asymmetry of the core on the birefringence is dominant for shorter wavelength. Increased birefringence and reduced confinement loss can be achieved, if we form the core by the omission of several air holes in a row to reduce its negative effect on the birefringence. On the other hand, when asymmetry is increased in the other direction, a negative birefringence at shorter wavelength can be achieved. This occurs due to the fact that asymmetry of the core at higher frequencies overcomes the effect of the asymmetric cladding. As a result, its possible to achieve zero birefringence in anisotropic cladding photonic crystal fiber with an asymmetric core.  相似文献   

2.
A new nonlinear dispersion flattened photonic crystal fiber with low confinement loss is proposed. This fiber has threefold symmetry core. The doped region in the core and the big air-holes in the 1st ring can make high nonlinearity in the PCF. And the small air-holes in the 1st ring and the radial increasing diameters air-holes rings in cladding can be used to achieve the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCFs structure parameters. A PCF with flattened dispersion is obtained. The dispersion is less than 0.8 ps/(nm km) and is larger than −0.7 ps/(nm km) from 1.515 μm to 1.622 μm. The nonlinear coefficient is about 12.6456 W−1 km−1, the fundamental mode area is about 10.2579 μm2. The confinement loss is 0.30641 dB/km. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal fibers with high nonlinearities.  相似文献   

3.
Raman soliton phenomena in photonic crystal fibers are shown to allow efficient tunable frequency shifting of sub-10-fs laser pulses. Soliton self-frequency shift in a photonic-crystal fiber with a core diameter less than 2 μm is used to transform the spectrum of a 6-fs 2-nJ Ti: sapphire-laser pulse, dominated by a 670-nm peak, into a spectrum featuring a well-resolved intense spectral component centered at 1064 nm, which is ideally suited as a seed for Nd: YAG- and ytterbium-based laser devices.  相似文献   

4.
The 1-hole-missing and 7-hole-missing photonic crystal fibers (PCFs) with flattened fundamental modes (FMs) are proposed by introducing a layer of up-doped silica into the core of the PCFs. The transverse mode competitions are compared between the 7-hole-missing PCF lasers with and without flattened-FMs. The numerical results show that the flattened-FM PCF lasers can support the single transverse mode operation, even for a large value of the ratio of air hole diameter to the spacing between holes (up to 0.53).  相似文献   

5.
Microstructured optical fibres (MOFs) have attracted much interest in recent times, due to their unique waveguiding properties that are vastly different from those of conventional step-index fibres. Tapering of these MOFs promises to significantly extend and enhance their capabilities. In this paper, we review the fabrication and characterisation techniques of these fibre tapers, and explore their fundamental waveguiding properties and potential applications. We fabricate photonic crystal fibre tapers without collapsing the air-holes, and confirm this with a non-invasive probing technique that enables the characterisation of the internal microstructure along the taper. We then describe the fundamental property of such tapers associated with the leakage of the core mode that leads to long-wavelength loss, influencing the operational bandwidth of these tapers. We also revisit the waveguiding properties in another form of tapered MOF photonic wires, which transition through waveguiding regimes associated with how strongly the mode is isolated from the external environment. We explore these regimes as a potential basis for evanescent field sensing applications, in which we can take advantage of air-hole collapse as an extra dimension to these photonic wires.  相似文献   

6.
A new structure of highly birefringent honeycomb photonic bandgap fibres (PBGFs), including an elliptical air hole in its solid core, is proposed and analysed by using full vectorial plane wave expansion method. From the numerical results it is confirmed that the proposed PBGF. has birefringence of the order of 10^-3. Moreover, there are two single-polarization single-mode ranges at varying normalized wavelength, in one of which only the slowaxis mode exists, and in the other only the fast-axis mode exists, which has not been achieved in index-guiding photonic crystal fibres so far.  相似文献   

7.
We report the possibility of using tapered microstructured fibers to improve the coupling efficiency from a standard single-mode fiber to a photonic crystal waveguide. The tapered microstructured fiber allows for the reduction of the mode mismatch between the output of the standard fiber and the input of the waveguide while maintaining single-mode guidance, which results in an enhanced coupling efficiency. Numerical simulations are conducted in order to optimize the cross section of the microstructured fiber as well as the taper profile. An improvement of more than 4 dB is obtained compared to non-tapered fibers. For further improvement, an elliptical-core tapered microstructured fiber is analyzed. The effect of misalignment between the tapered microstructured fiber and the waveguide is also studied.  相似文献   

8.
An octagonal photonic crystal fiber (O-PCF) structure with eight air-holes on the first ring is proposed based on a unit isosceles triangle. The propagation characteristics and cut-off behaviors of the O-PCF and the standard hexagonal PCF (H-PCF) are numerically investigated by combining the vector boundary method and the effective area method. The phase boundaries for cut-off, single-mode, and multi-mode operations between the O-PCF and H-PCF are calculated and compared. It is found that under the same pitch Λ and air filling fraction (AFF) of the air-holes the O-PCF has significantly wider wavelength range operating in single-mode region, more circular-like field distribution, and less confinement loss than the H-PCF.  相似文献   

9.
A temperature tunable photonie bandgap fiber (PBGF) is demonstrated by an index-guiding photonic crystal fiber filled with high-index liquid. The temperature tunable characteristics of the fiber are experimentally and numerically investigated. Compression of transmission bandwidth of the PBGF is demonstrated by changing the temperature of part of the fiber. The tunable transmission bandwidth with a range of 250nm is achieved by changing the temperature from 30℃ to 90℃.  相似文献   

10.
All-solid silica-based photonic crystal fibers   总被引:1,自引:0,他引:1  
An index-guiding all-solid photonic crystal fiber (PCF) composed entirely of silica material is proposed in this paper. The core of this optical fiber is composed of pure silica, and the cladding consists of doped silica rod in the background of pure silica. The dependence of confinement loss on the diameter of the doped rods, the number of doped-rod rings, and the doping level is investigated numerically. In addition, the proposed fiber possesses a shorter cutoff wavelength as compared with the air/silica PCF, which is directly confirmed by the V parameter, and explained based on a scalar approximation method. Furthermore, the bending loss for the fiber is predicted. A low-loss single-mode all-solid silica-based PCF with a large-mode-area is possible by the appropriate selection of configuration parameters.  相似文献   

11.
We demonstrate the generation of ultrabroad spectra in a photonic crystal fiber with a kagome-lattice transverse structure. This two-dimensional periodic photonic lattice allows for strong confinement of light without employing defect states nor using photonic bandgap guiding. Light guiding is mediated by total internal reflection in the intersections of the lattice structure, similar to tapered or micro-structured fibers. The kagome lattice structure is manufactured from a soft glass with a high nonlinearity. Using a Ti:sapphire oscillator as a pump source, we observe for the first time impressive supercontinuum generation in the guided modes of a 2D photonic lattice. Supercontinuum generation is caused by fission and radiation of higher-order solitons in the anomalous dispersion range. Our spectrum encompasses the spectral range from 200 to 1750 nm. The dependence of the continuum on coupling spot location, fiber length, and pump wavelength and power as well as on pulse duration and polarization state is investigated. Using a numerical simulation for the lattice structure, pulse propagation through this structure is theoretically studied. Our model reveals the mechanism of supercontinuuum generation in the 2D photonic structure and explains the essential experimental findings.Electronic supplementary material to this article is avaiable at and accessible for authorized users.  相似文献   

12.
We use cross-correlation frequency-resolved optical gating to obtain spectral-temporal portraits of ultrashort Raman solitons in photonic crystal fibers at telecommunication wavelengths. Power-dependent Raman frequency shifts of 200 nm in 63 mm of fiber are observed accompanied by spectral broadening and 2.5-times soliton compression. Complete time-frequency dynamics at the fundamental wavelength thus visualized enables us to explain the details of the intermodally phase-matched third harmonic generation by the propagating solitons.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

13.
We report on broadband absorption and transmission measurements using supercontinuum sources generated in microstructured fibers. The advantages of this measurement technique include high brightness and broad bandwidth. Furthermore, the high spatial coherence of the supercontinuum source allows for efficient coupling into the device under test compared to standard light bulbs. Employing this technique, we measure the impurity absorption spectrum of Erbium-doped fibers with both low and high dopant concentration. The transmission spectra of a photonic bandgap fiber and a high-finesse fiber cavity are also characterized.  相似文献   

14.
A kind of high birefringence SF6 soft glass photonic crystal fiber (HBSF6-PCF) is proposed. The properties of birefringence, dispersion, nonlinear coefficient and the transmission characteristics are studied by the multipole method and the adaptive split-step Fourier method. The numerical results show that the birefringence and the nonlinear coefficient reach the orders of 10^-2 and 10^-1, respectively. In addition, the HBSF6-PCFs can generate very smooth supercontinuum spectra when illuminated with femtosecond pulsed light of 1064 nm. It is found that up to 800nm spectral width (evaluated at -5dB from the peak) is achieved. Therefore, the advantage of the HBSF6-PCFs is such that a high birefringence, a high nonlinearity and a smooth supercontinuum are perfectly combined in them.  相似文献   

15.
Using the tunable pump pulses with about lOO fs pulse duration and 1064 nm central wavelength; the polarization-, wavelength- and power-dependent anti-Stokes lines are generated and modulated simultaneously in a polarization-maintaining photonie crystal fiber (PM-PCF) with two zero-dispersion wavelengths. By accurately controlling the polarization directions, the wavelength and the power of the pump pulse in the fiber anomalous region close to the second zero-dispersion wavelength of the PM-PCF, the output anti-Stokes pulse spectra can be tuned between 563 nm and 603 nm, which is in good agreement with the theoretical simulation. The color conversion of the mode image from yellow to orange is also observed with the different polarization pump pulses. These results can be attributed to the combined interaction between the fiber birefringence (including linear- and nonlinear- birefringence) and dispersion, and are attributed to phase-matching parametric four-wave mixing.  相似文献   

16.
Based on the generalized nonlinear Schroedinger equation, we investigate efficient dispersive wave (DW) generation in a photonic crystal fiber (POF) by numerical simulation and discuss a way to control DW generation by using an initial input pulse chirp. It is shown that efficient red-shifted DW generation can be obtained in a PCF with negative dispersion slopes. The energy contained in the DWs is considerably decreased for both positively and negatively chirped pulses at the fiber output. This provides us with an opportunity to conveniently and efficiently manipulate the DW generation by controlling the pre-chirp of the soliton. Moreover, we also show that forth- and higher-order dispersion terms play Iittle part in deciding the evolution of DWs.  相似文献   

17.
Y. Jiang  Y. Leng  X. Chen  X. Li  Z. Xu 《Optics Communications》2008,281(9):2449-2453
An acoustic-optics programmable dispersive filter (AOPDF) was first employed to actively control the linearly polarized femtosecond pump pulse frequency chirp for supercontinuum (SC) generation in a high birefringence photonic crystal fiber (PCF). By accurately controlling the second order phase distortion and polarization direction of incident pulses, the output SC spectrum can be tuned to various spectral energy distributions and bandwidths. The pump pulse energy and bandwidth are preserved in our experiment. It is found that SC with broader bandwidth can be generated with positive chirped pump pulses except when the chirp value is larger than the optimal value, and the same optimal value exists for the pump pulses polarized along the two principal axes. With optimal positive chirp, more than 78% of the pump energy can be transferred to below 750 nm. Otherwise, negative chirp will weaken the blue-shift broadening and the SC bandwidth.  相似文献   

18.
Reported are experimental results from investigations of the sensing properties of long-period gratings (LPGs) recorded in two different geometries of photonic crystal fibre (PCF): a large-mode area PCF and an endlessly single mode PCF. The LPGs have been characterised for their sensitivity to temperature, bending, surrounding index and strain. The LPGs in both fibres have been found to have negligible temperature sensitivity whilst exhibiting useful strain sensitivities. Strong directional bend sensitivity is shown by one PCF whilst the other shows good non-directional bend sensitivity. The fibres exhibit differing sensitivities to surrounding refractive index.  相似文献   

19.
A review of optical fiber sensing demonstrations based on photonic crystal fibers is presented. The text is organized in five main sections: the first three deal with sensing approaches relying on fiber Bragg gratings, long‐period gratings and interferometric structures; the fourth one reports applications of these fibers for gas and liquid sensing; finally, the last section focuses on the exploitation of nonlinear effects in photonic crystal fibers for sensing.  相似文献   

20.
光子晶体光纤色散的无量纲化计算方法   总被引:4,自引:0,他引:4       下载免费PDF全文
关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号