首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The governing equilibrium equations for strain gradient elastic thin shallow shells are derived, considering nonlinear strains and linear constitutive strain gradient elastic relations. Adopting Kirchhoff’s theory of thin shallow structures, the equilibrium equations, along with the boundary conditions, are formulated through a variational procedure. It turns out that new terms are introduced, indicating the importance of the cross-section area in bending of thin plates. Those terms are missing from the existing strain gradient shallow thin shell theories. Those terms highly increase the stiffness of the structures. When the curvature of the shallow shell becomes zero, the governing equilibrium for the plates is derived.  相似文献   

2.
薄板问题的控制方程为四阶微分方程,因而当采用伽辽金法进行分析时,形函数需要满足C$^{1}$连续性要求,且至少使用二次基函数才能保证方法的收敛性.无网格形函数虽然易于满足C$^{1}$连续性要求,但由于不是多项式,其二阶导数的计算较为复杂耗时,同时也对刚度矩阵的数值积分提出了更高的要求.本文提出了一种薄板分析的线性基梯度光滑伽辽金无网格法,该方法的基础是线性基无网格形函数的光滑梯度.在梯度光滑构造的理论框架内,无网格形函数的二阶光滑梯度可以表示为形函数一阶梯度的线性组合,因而可以提高形函数二阶梯度的计算效率.分析表明,线性基无网格形函数的光滑梯度不仅满足其固有的线性梯度一致性条件,还满足本属于二次基函数对应的额外高阶一致性条件,因此能够恰当地运用到薄板结构的伽辽金分析.此外,插值误差分析也很好地验证了线性基无网格光滑梯度的收敛特性.算例结果进一步表明,线性基梯度光滑伽辽金无网格法的收敛率与传统二次基伽辽金无网格法相当,但精度更高,同时刚度矩阵所需的高斯积分点数明显减少.   相似文献   

3.
Biaxial strain and pure shear of a thin film are analysed using a strain gradient plasticity theory presented by Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406]. Constitutive equations are formulated based on the assumption that the free energy only depends on the elastic strain and that the dissipation is influenced by the plastic strain gradients. The three material length scale parameters controlling the gradient effects in a general case are here represented by a single one. Boundary conditions for plastic strains are formulated in terms of a surface energy that represents dislocation buildup at an elastic/plastic interface. This implies constrained plastic flow at the interface and it enables the simulation of interfaces with different constitutive properties. The surface energy is also controlled by a single length scale parameter, which together with the material length scale defines a particular material.Numerical results reveal that a boundary layer is developed in the film for both biaxial and shear loading, giving rise to size effects. The size effects are strongly connected to the buildup of surface energy at the interface. If the interface length scale is small, the size effect vanishes. For a stiffer interface, corresponding to a non-vanishing surface energy at the interface, the yield strength is found to scale with the inverse of film thickness.Numerical predictions by the theory are compared to different experimental data and to dislocation dynamics simulations. Estimates of material length scale parameters are presented.  相似文献   

4.
An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key feature of this new approach is that it can describe the finite deformation of crystals under thermal conditions. The obtained plastic deformation gradient contains not only plastic defor- mation but also thermal effects. The governing equation for the plastic deformation gradient is obtained based on ther- mal multiplicative decomposition of the total deformation gradient. An implicit method is used to integrate this evo- lution equation to ensure stability. Single crystal 1 100 aluminum is investigated to demonstrate practical applications of the model. The effects of anisotropic properties, time step, strain rate and temperature are calculated using this integration model.  相似文献   

5.
Non-uniform plastic deformation of materials exhibits a strong size dependence when the material and deformation length scales are of the same order at micro- and nano-metre levels. Recent progresses in testing equipment and computational facilities enhancing further the study on material characterization at these levels confirmed the size effect phenomenon. It has been shown that at this length scale, the material constitutive condition involves not only the state of strain but also the strain gradient plasticity. In this study, C0 axisymmetric element incorporating the mechanism-based strain gradient plasticity is developed. Classical continuum plasticity approach taking into consideration Taylor dislocation model is adopted. As the length scale and strain gradient affect only the constitutive relation, it is unnecessary to introduce either additional model variables or higher order stress components. This results in the ease and convenience in the implementation. Additional computational efforts and resources required of the proposed approach as compared with conventional finite element analyses are minimal. Numerical results on indentation tests at micron and submicron levels confirm the necessity of including the mechanism-based strain gradient plasticity with appropriate inherent material length scale. It is also interesting to note that the material is hardened under Berkovich compared to conical indenters when plastic strain gradient is considered but softened otherwise.  相似文献   

6.
The two key phenomena occurring in the process of ceramic powder compaction are the progressive gain in cohesion and the increase of elastic stiffness, both related to the development of plastic deformation. The latter effect is an example of ‘elastoplastic coupling’, in which the plastic flow affects the elastic properties of the material, and has been so far considered only within the framework of small strain assumption (mainly to describe elastic degradation in rock-like materials), so that it remains completely unexplored for large strain. Therefore, a new finite strain generalization of elastoplastic coupling theory is given to describe the mechanical behaviour of materials evolving from a granular to a dense state.The correct account of elastoplastic coupling and of the specific characteristics of materials evolving from a loose to a dense state (for instance, nonlinear – or linear – dependence of the elastic part of the deformation on the forming pressure in the granular – or dense – state) makes the use of existing large strain formulations awkward, if even possible. Therefore, first, we have resorted to a very general setting allowing general transformations between work-conjugate stress and strain measures; second, we have introduced the multiplicative decomposition of the deformation gradient and, third, employing isotropy and hyperelasticity of elastic response, we have obtained a relation between the Biot stress and its ‘total’ and ‘plastic’ work-conjugate strain measure. This is a key result, since it allows an immediate achievement of the rate elastoplastic constitutive equations. Knowing the general form of these equations, all the specific laws governing the behaviour of ceramic powders are finally introduced as generalizations of the small strain counterparts given in Part I of this paper.  相似文献   

7.
吴俊超  吴新瑜  赵珧冰  王东东 《力学学报》2022,54(12):3283-3296
无网格法具有高阶连续光滑的形函数, 在结构分析中呈现出显著的精度优势. 但无网格形函数在节点处一般没有插值性, 导致伽辽金无网格法难以直接施加本质边界条件. 采用变分一致尼兹法施加边界条件的数值解具有良好的收敛性和稳定性, 因而得到了非常广泛的应用, 然而该方法仍然需要引入人工参数来保证算法的稳定性. 本文以赫林格?赖斯纳变分原理为基础, 建立了一种变分一致的本质边界条件施加方法. 该方法采用混合离散近似赫林格?赖斯纳变分原理弱形式中的位移和应力, 其中位移采用传统无网格形函数进行离散, 而应力则在背景积分单元中近似为相应阶次的多项式. 此时的无网格离散方程可视为一种新型的尼兹法施加本质边界条件, 其中修正变分项采用再生光滑梯度和无网格形函数进行混合离散, 稳定项则内嵌于赫林格?赖斯纳变分原理弱形式中, 无需额外增加稳定项, 消除了对人工参数的依赖性. 该方法无需计算复杂耗时的形函数导数, 并满足积分约束条件, 保证了数值求解的精度. 数值结果表明, 所提方法能够保证伽辽金无网格法的计算精度最优误差收敛率, 与传统的尼兹法相比明显提高了计算效率.   相似文献   

8.
This study investigates thermodynamically consistent dissipative hardening in gradient crystal plasticity in a large-deformation context. A viscoplastic model which accounts for constitutive dependence on the slip, the slip gradient as well as the slip rate gradient is presented. The model is an extension of that due to Gurtin (Gurtin, M. E., J. Mech. Phys. Solids, 52 (2004) 2545–2568 and Gurtin, M. E., J. Mech. Phys. Solids, 56 (2008) 640–662)), and is guided by the viscoplastic model and algorithm of Ekh et al. (Ekh, M., Grymer, M., Runesson, K. and Svedberg, T., Int. J. Numer. Meths Engng, 72 (2007) 197–220) whose governing equations are equivalent to those of Gurtin for the purely energetic case. In contrast to the Gurtin formulation and in line with that due to Ekh et al., viscoplasticity in the present model is accounted for through a Perzyna-type regularization. The resulting theory includes three different types of hardening: standard isotropic hardening is incorporated as well as energetic hardening driven by the slip gradient. In addition, as a third type, dissipative hardening associated with plastic strain rate gradients is included. Numerical computations are carried out and discussed for the large strain, viscoplastic model with non-zero dissipative backstress.  相似文献   

9.
ABSTRACT

A mixed variational principle is constrained by a homogeneous yield function using a Lagrange multiplier. The Lagrange factor corresponds to the scalar factor in Prager's normality rule for the plastic strain increments. Several reduced functionals and their associated constitutive equations are derived by eliminating some variables.  相似文献   

10.
张俊波  李锡夔 《力学学报》2009,41(6):888-897
对梯度塑性连续体提出了一个归结为线性互补问题的数值分析方法. 塑性乘子与位移均为主要未知变量,并采用基于移动最小二乘的无网格方法分别在积分点与节点上插值. 联立弱形式下的平衡方程与积分点上逐点满足的非局部本构方程和屈服准则可以导出一个线性互补问题,并通过Lexico-Lemke算法求解. 构造了一个基于N-R方法的迭代方案,使得不需要形成一致性切线刚度矩阵而仍保持二阶收敛性. 一维和二维的数值算例证明了所提出的方法处理由应变软化引起的应变局部化问题的有效性.   相似文献   

11.
The bending analysis of a thin rectangular plate is carried out in the framework of the second gradient elasticity. In contrast to the classical plate theory, the gradient elasticity can capture the size effects by introducing internal length. In second gradient elasticity model, two internal lengths are present, and the potential energy function is assumed to be quadratic function in terms of strain, first- and second-order gradient strain. Second gradient theory captures the size effects of a structure with high strain gradients more effectively rather than first strain gradient elasticity. Adopting the Kirchhoff’s theory of plate, the plane stress dimension reduction is applied to the stress field, and the governing equation and possible boundary conditions are derived in a variational approach. The governing partial differential equation can be simplified to the first gradient or classical elasticity by setting first or both internal lengths equal to zero, respectively. The clamped and simply supported boundary conditions are derived from the variational equations. As an example, static, stability and free vibration analyses of a simply supported rectangular plate are presented analytically.  相似文献   

12.
13.
A phenomenological model for evolving anisotropy at large strains is presented. The model is formulated using spatial quantities and the anisotropic properties of the material is modeled by including structural variables. Evolution of anisotropy is accounted for by introducing substructural deformation gradients which are linear maps similar to the usual deformation gradient. The evolution of the substructural deformation gradients is governed by the substructural plastic velocity gradients in a manner similar to that for the continuum. Certain topics related to the numerical implementation are discussed and a simple integration scheme for the local constitutive equations is developed. To demonstrate the capabilities of the model it is implemented into a finite element code. Two numerical examples are considered: deformation of uniform plate with circular hole and the drawing of a cup. In the two examples it is assumed that initial cubic material symmetry applies to both the elastic and plastic behavior. To be specific, a polyconvex Helmholtz free energy function together with a yield function of quadratic type is adopted.  相似文献   

14.
A method of stress—strain analysis of elastoplastic bodies with large displacements, rotations, and finite strains is developed. The incremental loading technique is used within the framework of the arbitrary Lagrangian—Eulerian formulation. Constitutive equations are derived which relate the Jaumann derivative of the Cauchy—Euler stress tensor and the strain rate. The spatial discretization is based on the FEM and multilinear three-dimensional isoparametric approximation. An algorithm of stress—strain analysis of elastic, hyperelastic, and perfectly plastic bodies is given. Numerical examples demonstrate the capabilities of the method and its software implementation __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 6, pp. 36–43, June 2005.  相似文献   

15.
假设肺组织和肿瘤为均匀弹性材料,给出了其本构方程,提出了用位移量来反演肺组织及肿瘤的弹性模量及泊松比的目标函数及其最小值问题,以及相应的梯度逼近法,其中梯度通过基于有限元分析结果的差分作近似计算。通过一实例的CT映像,重建肺部组织及肿瘤在呼吸过程中的三维模型,提取某时刻的肺部边界位移及样点的位移,在此基础上反演了其材料参数,分析了反演方法的收敛情况。  相似文献   

16.
Constitutive equations for a multiphase mixture of fluids are presented. The mixture is assumed to consist of a single non-uniform temperature and no change is allowed. The theory is based on the conservation and balance equations of multiphase mixtures proposed by Dobran, and the constitutive assumption allows for the effects of temperature gradient, density gradients, velocity gradients, velocities and accelerations. A linearized form of the constitutive equations is presented for an arbitrary number of phases, and restrictions on the constitutive assumption are investigated by the second law of thermodynamics. The theory yielded a significant number of results and they are compared with previous investigations.  相似文献   

17.
In the presence of plastic slip gradients, compatibility requires gradients in elastic rotation and stretch tensors. In a crystal lattice the gradient in elastic rotation can be related to bond angle changes at cores of so-called geometrically necessary dislocations. The corresponding continuum strain energy density can be obtained from an interatomic potential that includes two- and three-body terms. The three-body terms induce restoring moments that lead to a couple stress tensor in the continuum limit. The resulting stress and couple stress jointly satisfy a balance law. Boundary conditions are obtained upon stress, couple stress, strain and strain gradient tensors. This higher-order continuum theory was formulated by Toupin (Arch. Ration. Mech. Anal. 11 (1962) 385). Toupin's theory has been extended in this work to incorporate constitutive relations for the stress and couple stress under multiplicative elastoplasticity. The higher-order continuum theory is exploited to solve a boundary value problem of relevance to single crystal and polycrystalline nano-devices. It is demonstrated that certain slip-dominated deformation mechanisms increase the compliance of nanostructures in bending-dominated situations. The significance of these ideas in the context of continuum plasticity models is also dwelt upon.  相似文献   

18.
In this work, a new plane stress element is proposed for the nonlinear static and dynamic analysis of plane stress/plane strain problems. The four node quadrilateral element formulation for the elastic case is extended by introducing a novel hysteretic constitutive relation, based on the Bouc–Wen model of hysteresis. The hysteretic model introduced is directly derived from the governing equations of classical plasticity based on the flow rule and specific hardening law. The stiffness matrix of the element is formulated using the principle of virtual displacements, where the elastic stress–strain relation is substituted by the hysteretic relation proposed. The derived stiffness matrix is expressed as a smooth function of the internal stress field both in the elastic and inelastic regime. The efficiency of the proposed element in the simulation of the cyclic behavior in plane structures is presented through illustrative examples.  相似文献   

19.
A theoretical framework is presented that has potential to cover a large range of strain gradient plasticity effects in isotropic materials. Both incremental plasticity and viscoplasticity models are presented. Many of the alternative models that have been presented in the literature are included as special cases. Based on the expression for plastic dissipation, it is in accordance with Gurtin (J. Mech. Phys. Solids 48 (2000) 989; Int. J. Plast. 19 (2003) 47) argued that the plastic flow direction is governed by a microstress qij and not the deviatoric Cauchy stress σij′ that has been assumed by many others. The structure of the governing equations is of second order in the displacements and the plastic strains which makes it comparatively easy to implement in a finite element programme. In addition, a framework for the formulation of consistent boundary conditions is presented. It is shown that there is a close connection between surface energy of an interface and boundary conditions in terms of plastic strains and moment stresses. This should make it possible to study boundary layer effects at the interface between grains or phases. Consistent boundary conditions for an expanding elastic-plastic boundary are as well formulated. As examples, biaxial tension of a thin film on a thick substrate, torsion of a thin wire and a spherical void under remote hydrostatic tension are investigated.  相似文献   

20.
The constitutive relations of a theory of thermo-visco-elastic-plastic continuum have been formulated in Lagrangian form. The Lagrangian strains, strain rates, temperature, temperature rate and temperature gradients are considered as the independent constitutive variables. Three internal state variables (plastic strain tensor, back strain tensor and a scalar hardening parameter) are also incorporated. The axioms of objectivity and equipresence are followed. The Clausius–Duhem inequality is taken as the second law of thermodynamics. Several special theories are deduced based on material symmetries and/or conventionally adopted assumptions. The applications to the formation of shear bands and dynamic crack propagation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号