首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two-dimensional free-energy surfaces are calculated for alkyl chloride/chloride exchange/inversion reactions: Cl(-)+RCl (R=Me and t-Bu) surrounded by one hundred H(2)O molecules as a model of solvent. The methodology of free-energy calculation by perturbation theory based on a mixed-Hamiltonian model (QM/MM) combined with Monte Carlo sampling of the solvent configurations was used to obtain the changes in solvation free energy. We devised a special procedure to analyze the two-dimensional free-energy surfaces to gain unique insight into the differences in the reaction mechanisms between the two systems. The inversion reaction path for R=t-Bu on the free-energy surface is found to proceed in an asynchronous way within a concerted framework via the ion-pair region. This is in contrast to the R=Me system that proceeds as a typical S(N)2 reaction.  相似文献   

2.
The reaction of N-polyfluorophenylcarbonimidoyl dichlorides with tertiary amines in acetonitrile afforded chloroamidines R2NC(Cl) = NArF and alkyl chloride. The precursor of the products is the corresponding quaternary ammonium salt [R3N+C(Cl) = NArF]-Cl-. The rate of the salt formation is described by a second order equation; however with some amines a saturation effect was observed for the reaction rate with the growing amine concentration. This fact and also the influence of the amine and the substrate structure on the reaction rate suggests that reaction proceeds by addition-elimination mechanism with formation of a tetrahedral intermediate. The latter in the rate-limiting stage undergoes a stereomutation into an intermediate of a configuration favorable for conversion into a quaternary salt.  相似文献   

3.
The free-energy profile for the different reaction pathways available to the hydroxide ion and methyl formate in aqueous solution is reported for the first time. The theoretical analysis was carried out by using the cluster-continuum method recently proposed by us for calculating the free energy of solvation of ions. Unlike the gas-phase reaction, our results are consistent with the fact that the reaction occurs mainly by nucleophilic attack of the hydroxide on the carbonyl carbon to yield a tetrahedral intermediate (B(AC)2 mechanism). However, an additional pathway, in which the hydroxide ion acts as a general base and a water molecule coordinated to this ion acts as the nucleophile, is also predicted to be important. The relative importance of these pathways is calculated to be 87 % and 13 %, respectively. The tetrahedral intermediate of the hydrolysis reaction has an estimated lifetime of 10 nanoseconds, and its conjugate acid has a pK(a) of 8.8. This tetrahedral intermediate is predicted to proceed to products by two pathways: elimination of methoxide ion (84 %) and by water catalyzed elimination of methanol (16 %). The less common reaction pathway, which involves attack of the hydroxide ion on the formyl hydrogen (decarbonylation mechanism) and leads to water, carbon monoxide, and methanol, is calculated to be only 3 kcal mol(-1) less favorable than the B(AC)2 mechanism. By comparison, direct attack of the hydroxide ion on the methyl group (B(AL)2 or S(N)2 mechanism) leading to an acyl-oxygen bond cleavage has a very high free energy of activation and is not expected to be important. The theoretically observed activation free energy at 298.15 K is calculated to be 15.5 kcal mol(-1), in excellent agreement with the experimentally measured value of 15.3 kcal mol(-1). This present model allows for a clear distinction between contributions due to solvation and those due to intrinsic (gas-phase) effects and proves to yield results in very good agreement with available experimental data.  相似文献   

4.
Contrary to earlier suggestions of an S(N)1 pathway for solvolyses of N,N-dimethylsulfamoyl chloride (1), an extended Grunwald-Winstein equation treatment of the specific rates of solvolysis in 32 solvents shows an appreciable sensitivity towards changes in both solvent nucleophilicity and solvent ionizing power. The actual values are very similar to those obtained in earlier studies of the solvolyses of sulfonyl and phosphoryl chlorides, solvolyses which are believed to proceed by an S(N)2 pathway. The observation of similar selectivities in aqueous-alcohol solvents further supports this assignment. In a recent report, an addition-elimination (association-dissociation) pathway was proposed for solvolyses of 2-propanesulfonyl chloride (2). A severe multicollinearity problem has been removed by the addition of several specific rates of solvolysis in fluoroalcohol-containing solvents. The new analyses using the extended Grunwald-Winstein equation lead to sensitivities similar to those for and the previously studied related compounds, and these solvolyses are also best described as following an S(N)2 pathway.  相似文献   

5.
First-order solvolysis rate constants are reported for solvolyses of acetyl chloride in methanol and MeOD, and in binary aqueous mixtures with acetone, acetonitrile, ethanol, methanol, and trifluoroethanol at 0 degrees C. Product selectivities (S = [MeCOOR]/[MeCOOH] x [water]/[alcohol]) are reported for solvolyses in ethanol/ and methanol/water at 0 degrees C. Solvolyses of acetyl chloride show a high sensitivity to changes in solvent ionizing power, consistent with C-Cl bond cleavage. As the solvent is varied from pure ethanol (or methanol) to water, S values and rate-rate profiles show no evidence for the change in reaction channel observed for solvolyses of benzoyl and trimethylacetyl chlorides. However, using rate ratios in 40% ethanol/water and 97% trifluoroethanol/water (solvents of similar ionizing power but different nucleophilicities) to compare sensitivities to nucleophilic attack, solvolyses of acetyl chloride are over 20-fold more sensitive to nucleophilic attack than benzoyl chloride. The solvent isotope effect of 1.29 (MeOH/MeOD) for acetyl chloride is similar to that for p-methoxybenzoyl chloride (1.22) and is lower than for benzoyl chloride (1.55). Second-order rate constants for aminolyses of acetyl chloride with m-nitroaniline in methanol at 0 degrees C show that acetyl chloride behaves similarly to p-methoxybenzoyl chloride, whereas benzoyl chloride is 40-fold more sensitive to the added amine. The results indicate mechanistic differences between solvolyses of acetyl and benzoyl chlorides, and an S(N)2 mechanism is proposed for solvolyses and aminolyses by m-nitroaniline of acetyl chloride (i.e. these reactions are probably not carbonyl additions, but a strong sensitivity to nucleophilic attack accounts for their high rates).  相似文献   

6.
Deprotonation of benzylic ureas, carbamates, and thiocarbamates bearing N'-alkenyl substituents generates carbanions which undergo intramolecular migration of the alkenyl group to the carbanionic center. Solvolysis of the urea products generates α-alkenylated amines. With an enantiomerically pure starting urea, migration proceeds stereospecifically, generating in enantiomerically enriched form products containing allylic quaternary stereogenic centers bearing N. Computational and in situ IR studies suggest that the reaction, formally a nucleophilic substitution at an sp(2) carbon atom, proceeds by a concerted addition-elimination pathway.  相似文献   

7.
The starting Co(II) complexes of the general formulae, [Co(L1)2]Cl4.4H2O, [Co(L1)Cl2]Cl (L1=N-([(allyl amino)thioxomethyl]hydrazinocarbonylmethyl) trimethylammonium chloride; ATHTC), [Co(L2)Cl]Cl.2H2O.(1/2)EtOH (L2=N-([(ethylamine)thioxomethyl]hydrazinocarbonylmethyl)trimethylammonium chloride; ETHTC) and [Co(L3)Cl2]Cl.2EtOH (L3=N-([(phenylaminomethyl)thioxomethyl]hydrazinocarbonylmethyl)pyridinium chloride; PTHPC), were synthesized by the conventional chemical methods. Tribochemical reactions of the above mentioned CoII complexes obtained by chemical methods with KI afford novel CoII and CoIII complexes with the general formulae [Co(L1')I3.(1/2)EtOH]I, [Co2(L1')I4]I.EtOH, [Co(L2')I2.(3/2)EtOH]I, [Co2(L2')I4(OEt)2(H2O)2]I.(1/2)EtOH and [Co(L3')I2.H2O]I.3H2O. The ligands (L1', L2' and L3') formed by tribochemical reactions are quite similar to these of L1, L2 and L3, except that the ionizable chloride ions in case of L1, L2 and L3 are substituted by iodide ions in (L1', L2' and L3'). The isolated solid CoII and CoIII complexes have been characterized by elemental analyses, conductivities, spectral (IR, UV-vis, 1H NMR) and magnetic measurements. The IR spectra of the starting CoII complexes indicate that both L1 and L3 behave in bidentate manner coordinating via the carbonyl oxygen and NH2 groups, but L2 behaves as a tridentate fashion coordinating via the carbonyl oxygen, azomethine (C=N2) and SH groups with displacement of a hydrogen atom from the latter group. On the other hand, the IR spectra of the iodide CoII and CoIII complexes, synthesized by tribochemical reactions, suggest that L1' behaves only in a bidentate fashion via NH1 and CS groups. L2' behaves either as bidentate ligand through NH1 and CSH with deprotonation from the latter group or as a tetradentate ligand towards two cobalt ions via OH, C=N2, C=N1 and C-SH with displacement of a hydrogen atom from the latter group. Moreover, L3' behaves in a tetradentate ligand, toward two cobalt ions via the carbonyl oxygen, NH2, NH1 and CSH with displacements of a hydrogen atom from the latter group. The spectral and magnetic results suggest a tetrahedral geometry for all CoII complexes prepared by conventional chemical methods. The diamagnetic nature for three of the five iodide complexes, prepared by tribochemical reactions, suggests the oxidation of CoII to CoIII ion and the existence of low spin-octahedral geometry around the CoIII ion. Finally, the results of the rest of the iodide CoII complexes suggest either tetrahedral and/or high-spin octahedral geometry.  相似文献   

8.
Acylation of heteroatoms (O, N and S) with acetyl chloride based on the use of a catalytic amount of the moisture stable, inexpensive ZrOCl2·8H2O, proceeds efficiently producing the corresponding acylated products in excellent yields.  相似文献   

9.
A theoretical study of alcohol oxidation by ferrate   总被引:2,自引:0,他引:2  
The conversion of methanol to formaldehyde mediated by ferrate (FeO(4)2-), monoprotonated ferrate (HFeO4-), and diprotonated ferrate (H2FeO4) is discussed with the hybrid B3LYP density functional theory (DFT) method. Diprotonated ferrate is the best mediator for the activation of the O-H and C-H bonds of methanol via two entrance reaction channels: (1) an addition-elimination mechanism that involves coordination of methanol to diprotonated ferrate; (2) a direct abstraction mechanism that involves H atom abstraction from the O-H or C-H bond of methanol. Within the framework of the polarizable continuum model (PCM), the energetic profiles of these reaction mechanisms in aqueous solution are calculated and investigated. In the addition-elimination mechanism, the O-H and C-H bonds of ligating methanol are cleaved by an oxo or hydroxo ligand, and therefore the way to the formation of formaldehyde is branched into four reaction pathways. The most favorable reaction pathway in the addition-elimination mechanism is initiated by an O-H cleavage via a four-centered transition state that leads to intermediate containing an Fe-O bond, followed by a C-H cleavage via a five-centered transition state to lead to formaldehyde complex. In the direct abstraction mechanism, the oxidation reaction can be initiated by a direct H atom abstraction from either the O-H or C-H bond, and it is branched into three pathways for the formation of formaldehyde. The most favorable reaction pathway in the direct abstraction mechanism is initiated by C-H activation that leads to organometallic intermediate containing an Fe-C bond, followed by a concerted H atom transfer from the OH group of methanol to an oxo ligand of ferrate. The first steps in both mechanisms are all competitive in energy, but due to the significant energetical stability of the organometallic intermediate, the most likely initial reaction in methanol oxidation by ferrate is the direct C-H bond cleavage.  相似文献   

10.
The linear infrared and two-dimensional infrared (2D IR) spectra in the amide-I region of N-acetyl tryptophan methyl amide (NATMA) in solvents of varying polarity are reported. The two amide-I transitions have been assigned unambiguously by using 13C isotopic substitution of the carbonyl group. The amide unit at the amino end shows a lower transition frequency in CH2Cl2 and methanol, while the acetyl end has a lower transition frequency in D2O. Multiple conformers exist in CH2Cl2 and methanol, but only one conformer is evident in D2O. The 2D IR cross peaks from the intermode coupling yield off-diagonal anharmonicities 2.5 +/- 0.5, 3.25 +/- 0.5, and 3.0 +/- 0.5 cm(-1) in CH2Cl2, methanol, and D2O, respectively, which by simple matrix diagonalization yield the coupling constants 8.0 +/- 0.5, 8.0 +/- 1.0, and 5.5 +/- 1.0 cm(-1). The major conformer in CH2Cl2 corresponds to a C7 structure, in agreement with that found in the gas phase [Dian, B. C.; Longarte, A.; Mercier, S.; Evans, D. A.; Wales, D. J.; Zwier, T. S. J. Chem. Phys. 2002, 117, 10688-10702] with intramolecular hydrogen bonding between the acetyl end C=O and the amino end N-H. The backbone dihedral angles (phi, psi) are determined to be in the ranges of (-55 +/- 5 degrees , 30 +/- 5 degrees ), (120 +/- 10 degrees , -20 +/- 10 degrees ), and (+/-160 +/- 10 degrees , +/-75 +/- 10 degrees ) in CH2Cl2, methanol, and D2O, respectively.  相似文献   

11.
A base-catalyzed hydrolysis reaction of thiolester has been studied in both gas and solution phases using two ab initio quantum mechanics calculations such as Gaussian09 and CPMD. The free-energy surface along the reaction path is also constructed using a configuration sampling technique, namely, the metadynamics method. While there are two different reaction paths obtained for the potential profile of the base-catalyzed hydrolysis reaction for thiolester in the gas phase, a triple-well reaction path is computed for the reaction in the solution phase by two quantum mechanics calculations. Unlike the S(N)2 mechanism (a concerted mechanism) found for the gas-phase reaction, a nucleophilic attack from the hydroxide ion on the carbonyl carbon to yield a tetrahedral intermediate (a stepwise mechanism) is observed for the solution-phase reaction. Moreover, the energy profiles computed by these two theoretical calculations are found to be very comparable with those determined experimentally.  相似文献   

12.
We report a combined experimental and theoretical study to characterize the mechanism of base-induced beta-elimination reactions in systems activated by the pyridyl ring, with halogen leaving groups. The systems investigated represent borderline cases, where it is uncertain whether the reaction proceeds via a carbanion intermediate (E1cb, A(xh)D(H) + D(N)) or via the concerted loss of a proton and the halide (E2, A(N)D(E)D(N)) upon base attack. Experimentally, the Taft correlation for H/D exchange, in OD(-)/D(2)O with noneliminating substrates (1-methyl-2-(2-Xethyl)pyridinium iodide), is used to predict the expected values of the rate constants for the elimination reactions with N-methylated substrates and F, Cl, Br as the leaving group. The comparison indicates an E1cb irreversible mechanism with F, but the deviation observed with Cl and Br does not allow a conclusive assignment. The theoretical calculations show that for the N-methylated substrate with a fluoride leaving group the elimination proceeds via formation of a moderately stable carbanion. No stable anionic intermediate is instead found when the leaving group is Cl or Br, as well as for any of the nonmethylated species, indicating a concerted elimination. The methylated substrate with Cl shows however only a moderate increase in reactivity compared to the fluorinated substrate, despite the change in mechanism. Very interestingly, our analysis of the computed two-dimensional potential energy surface for the reaction with a F leaving group indeed evidences the lack of a net distinction between the E1cb and E2 reaction paths, which appear to merge smoothly into each other in these borderline cases.  相似文献   

13.
氧杂环丁烷热解机理的量子化学研究   总被引:2,自引:0,他引:2  
本文利用半经验分子轨道理论研究了氧杂环丁烷热解为甲醛和乙烯的反应机理计算是采用半经验方法AM1进行的, 各种驻点全部运用Berny梯度方法优化. 同时, 对过渡态的结构进行了振动分析的确证. 计算表明: 1)不存在协同的同面-同面反应途径的过渡态, 其驻点只是一个二级鞍点; 2) 协同的同面-异面反应途径需要经过一个能量很高的过渡态; 3)有利的反应途径是包含了双自由基中间体的分步过程。  相似文献   

14.
Ab initio QM/MM dynamics simulation is employed to examine the stability of the tetrahedral intermediate during the deacylation step in elastase-catalyzed hydrolysis of a simple peptide. An extended quantum region includes the catalytic triad, the tetrahedral structure, and the oxyanion hole. The calculations indicate that the tetrahedral intermediate of serine proteases is a stable species on the picosecond time scale. On the basis of geometrical and dynamical properties, and in agreement with many experimental and theoretical studies, it is suggested that the crucial hydrogen bonds involved in stabilizing this intermediate are between Asp-102 and His-57 and between the charged oxygen of the intermediate and the backbone N-H group of Gly-193 in the oxyanion hole. The mobility of the imidazolium ring between O(w) and O(gamma), two of the oxygens of the tetrahedral structure, shows how the intermediate could proceed toward the product state without a "ring-flip mechanism", proposed earlier on the basis of NMR data. In addition to the proposed C(epsilon)(1)-H.O hydrogen bond between the imidazolium ring and the backbone carbonyl of Ser-214, we observe an alternative C(epsilon)(1)-H.O hydrogen bond with the backbone carbonyl of Thr-213, that can stabilize the intermediate during the imidazolium movement. Proton hopping occurs between Asp-102 and His-57 during the simulation. The proton is, however, largely localized on the nitrogen, and hence it does not participate in a low-barrier hydrogen bond. The study also suggests factors that may be implicated in product release: breaking the hydrogen bond of the charged oxygen with the backbone of Ser-195 in the oxyanion hole and a loop opening between residues 216-225 that enables the breaking of a hydrogen bond in subsite S(3).  相似文献   

15.
Gas-phase nucleophilic substitution reactions at the imidoyl carbon have been investigated using chloride exchanges, Cl- + RY=CHCl right harpoon over left harpoon RY=CHCl + Cl- with Y = N and R = F, H or CH3, at the MP2, B3LYP and G2(+) levels using the MP2/6-311+G geometries. The results are compared with those for the vinyl (Y = CH) and carbonyl (Y = O) carbon substitution. The mechanism and reactivity of substitution at the imidoyl carbon are intermediate between those of carbonyl (SNpi) and vinyl carbon (SNsigma) substitution, which is directly related to the electronegativity of Y, CH < N < O. The prediction of competitive SNsigma with SNpi path for the imidoyl chloride is consistent with the S(N)1-like mechanism proposed for reactions in solution. The important factors in favor of an in-plane concerted SN2 (SNsigma) over an out-of-plane pi-attack (SNpi) path are (i) lower proximate sigma-sigma* charge-transfer energies (DeltaECT), (ii) stronger electrostatic stabilization (DeltaENCT), and (iii) larger lobe size on C(alpha) for the sigma*- than pi*-LUMO despite the higher sigma* than pi* level. The electron correlation energy effects at the MP2 level are overestimated for the relatively delocalized structure (S(N)pi TS) but are underestimated for the localized structure (SNsigma TS) so that the MP2 energies lead to a wrong prediction of preferred reaction path for the vinyl chloride. The DFT at the B3LYP level predicts correct reaction pathways but overestimates the electron correlation effects.  相似文献   

16.
Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1[n(O)→π*(C?O)] transition at 234–235 nm are investigated. Branching ratios for C? Br/C? Cl bond fission are found by using the (2+1) resonance‐enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the C?O chromophore. C? Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(C?O) and np(Cl)σ*(C? Cl) bands. In contrast, C? Br bond fission is subject to much weaker coupling between n(O)π*(C?O) and np(Br)σ*(C? Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2‐bromopropionyl chloride, which leads to excited‐state products. For 3‐bromopropionyl chloride, the available energy is not high enough to reach the excited‐state products such that C? Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted.  相似文献   

17.
ZnCl2, PhONa和Et4NCl稨2O在乙腈溶剂中反应合成了一种二核锌配合物[Et4N]2[Zn2(OPh)2Cl4]。X射线衍射结果表明,晶体属单斜晶系,C2/m空间群,晶胞参数 a = 14.1366(2), b=13.6985(5), c=9.3308(3)牛?107.851(2)o, V=1719.92(9)?,C28H50O2N2Zn2Cl4,Mr=721.24,Z=2,Dx=1.393g/cm3,μ(MoKα)=1.732mm—1,F(000)=756, R=0.0552, wR=0.1534, S=1.027。 配合物是由2个阳离子Et4N+和1个阴离子[Zn2(OPh)2Cl4]2—组成。阴离子[Zn2(OPh)2Cl4]2—包含着1个中心Zn2O2菱形平面。配合物中的2个锌原子通过2个苯酚中的氧原子桥连,每个锌原子还与2个氯原子配位形成变形四面体结构。  相似文献   

18.
The NO2S2-donor macrocycle (L1) was synthesised from the ring closure reaction between Boc-N-protected 2,2'-iminobis(ethanethiol) (3) and 2,2'-(ethylenedioxy)bis(benzyl chloride) (4) followed by deprotection of the Boc-group. alpha,alpha'-Dibromo-p-xylene was employed as a dialkylating agent to bridge two L1 to yield the corresponding N-linked product (L2). The X-ray structure of L2 (as its HBr salt) is described. A range of Cd(II) and Hg(II) complexes of L1 (6-9) and L2 (10-12) were prepared and characterised. Reaction of HgX2 (X = Br or I) with L1 afforded [Hg(L1)Br]2[Hg2Br6].2CH2Cl2 6 and [Hg(L1)I(2)] 7, respectively. For 6, the Hg(II) ion in the complex cation has a distorted tetrahedral coordination environment composed of S2N donor atoms from L1 and a bromo ligand. In 7 the coordination geometry is highly distorted tetrahedral, with the macrocycle coordinating in an exodentate manner via one S and one N atom. The remaining two coordination sites are occupied by iodide ions. [Hg(L1)(ClO4)]ClO4 8 was isolated from the reaction of Hg(ClO4)2 and L1. The X-ray structure reveals that all macrocyclic ring donors bind to the central mercury ion in this case, with the latter exhibiting a highly distorted octahedral coordination geometry. The O2S2-donors from the macrocyclic ring define the equatorial plane while the axial positions are occupied by the ring nitrogen as well as by an oxygen from a monodentate perchlorato ion. Reaction of Cd(NO3)(2).4H2O with L1 afforded [Cd(L1)(NO3)2](.)0.5CH2Cl2 9 in which L1 acts as a tridentate ligand, binding exo-fashion via its S2N donors. The remaining coordination positions are filled by two bidentate nitrate ions such that, overall, the cadmium is seven-coordinate. Reactions of HgX2(X = Br or I) with L2 yielded the isostructural 2 : 1 (metal : ligand) complexes, [Hg2(L2)Br4] 10 and [Hg2(L2)I(4)] 11. Each mercury ion has a distorted tetrahedral environment made up of S and N donors from an exodentate L2 and two coordinated halides. Contrasting with this, the reaction of L2 with Cd(NO3)(2).4H2O yielded a 1-D coordination network, {[Cd2(L2)(NO3)4].2CH2Cl2}n 12 in which each ring of L2 is exo-coordinated via two S atoms and one N atom to a cadmium ion which is also bound to one monodentate and one bidentate nitrate anion. The latter also has one of its oxygen atom attached to a neighboring cadmium via a nitroso (mu2-O) bridge such that the overall coordination geometry about each cadmium is seven-coordinate. The [Cd(L2)0.5(NO3)2] units are linked by an inversion to yield the polymeric arrangement.  相似文献   

19.
Proton-driven ligand dissociation kinetics in the presence of chloride, bromide, and nitrate ions have been investigated for model siderophore complexes of Fe(III) with the mono- and dihydroxamic acid ligands R(1)C(=O)N(OH)R(2) (R(1) = CH(3), R(2) = H; R(1) = CH(3), R(2) = CH(3); R(1) = C(6)H(5), R(2) = H; R(1) = C(6)H(5), R(2) = C(6)H(5)) and CH(3)N(OH)C(=O)[CH(2)](n)C(=O)N(OH)CH(3) (H(2)L(n); n = 2, 4, 6). Significant rate acceleration in the presence of chloride ion is observed for ligand dissociation from the bis(hydroxamate)- and mono(hydroxamate)-bound complexes. Rate acceleration was also observed in the presence of bromide and nitrate ions but to a lesser extent. A mechanism for chloride ion catalysis of ligand dissociation is proposed which involves chloride ion dependent parallel paths with transient Cl(-) coordination to Fe(III). The labilizing effect of Cl(-) results in an increase in microscopic rate constants on the order of 10(2)-10(3). Second-order rate constants for the proton driven dissociation of dinuclear Fe(III) complexes formed with H(2)L(n)() were found to vary with Fe-Fe distance. An analysis of these data permits us to propose a reactive intermediate of the structure (H(2)O)(4)Fe(L(n)())Fe(HL(n))(Cl)(OH(2))(2+) for the chloride ion dependent ligand dissociation path. Environmental and biological implications of chloride ion enhancement of Fe(III)-ligand dissociation reactions are presented.  相似文献   

20.
The theoretical investigations were performed on the reaction mechanisms for the title reactions CH(3)C(O)CH(3) + Cl --> products (R1), CH(3)C(O)CH(2)Cl + Cl --> products (R2), CH(3)C(O)CHCl(2) + Cl --> products (R3), and CH(3)C(O)CCl(3) + Cl --> products (R4) by ab initio direct dynamics approach. Two different reaction channels have been found: abstract of the H atom from methyl (--CH(3)) group or chloromethyl (--CH(3-n)Cl(n)) group of chloroacetone and addition of a Cl atom to the carbon atom of the carbonyl group of chloroacetone followed by methyl or chloromethyl eliminations. Because of the higher potential energy barrier, the contribution of addition-elimination reaction pathway to the total rate constants is very small and thus this pathway is insignificant in atmospheric conditions. The rate constants for the H-abstraction reaction channels are evaluated by using canonical variational transition state theory incorporating with the small-curvature tunneling correction. Theoretical overall rate constants are in good agreement with the available experimental values and decrease in the order of k(1) > k(2) > k(3) > k(4). The results indicate that for halogenated acetones the substitution of halogen atom (F or Cl) leads to the decrease in the C--H bond reactivity and more decrease of reactivity is caused by F-substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号