首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
针对船载自主水平姿态基准系统需求,提出了一种基于双微机电惯性测量单元的方案。其中一套固联船体,另一套为转位方式,以两套微机电惯性测量单元间相对速度、位置、姿态为观测约束,基于状态变换卡尔曼滤波实现不依靠外界辅助信息的自主式水平姿态测量算法,减弱了陀螺、加速度计零偏误差对水平姿态精度的影响。通过采用三轴角运动模拟转台进行了海况模拟实验验证。无舰船主惯导提供舰船运动信息情况下,虽然船的质心水平机动会影响水平姿态的绝对精度,但不会影响船上不同位置点之间的相对姿态测量精度;而当舰船上有高精度主惯导系统可提供速度参考时,即使有常值速度偏差和舒勒周期速度误差,仍可实现绝对姿态测量精度优于0.02°(1σ)。所提出的姿态测量方案可以在海况恶劣且无外界参考信息的情况下建立高性价比的全船统一姿态参考基准。  相似文献   

2.
针对武器系统姿态基准坞内标校过程复杂的问题,提出一种基于恒星参考系的基准标校方法.应用星敏感器拍摄星空图像并对星图进行处理获取量测信息,对星图进行天体辨识和恒星视位置同步计算获取基准信息,解算二者数据信息求取装备姿态,进而测量舰船不同部位装备基准偏差.建立了星敏感器与武器装备坐标系统一模型,在保证高精度的条件下解决了系统装舰对准困难的问题.实验结果表明测量精度优于10″.该方法操作简便,能有效实现舰船装备基准姿态偏差高精度测量,提高武器系统坞内标校的效率.  相似文献   

3.
提出了一种采用加速度计、磁强计和GPS芯片为主要传感器构成的舰船航姿测量模型,开发了由运动生成模块和姿态解算模块两部分组成的仿真程序,对舰船航姿测量模型进行了仿真实验分析验证。实验结果表明,该模型可以实时解算舰船航姿。在GPS速度测量误差为0.05 m/s,加速度计分辨率为10-5g,磁强计测量精度为0.5μT的情况下,舰船航向测量精度优于0.68°,姿态测量精度优于0.35°。  相似文献   

4.
舰载姿态加角速度匹配传递对准方法研究   总被引:4,自引:1,他引:4  
用于传递对准的测量参数匹配法极大地受限于舰船所处海况,为解决这一问题,提出了姿态加角速度匹配法。在三种典型的海况下,对这一传递对准方法中舰船甲板变形和陀螺常值漂移进行了Kalman滤波估计及精度分析,并对陀螺漂移标定的可行性进行了深入的分析。研究结果表明,姿态加角速度匹配法具有稳健的对准精度和快速性,陀螺漂移的标定依赖于舰船甲板动态变形的大小。  相似文献   

5.
大型舰船在水面上航行过程由于波浪的作用会产生一定的变形,该变形会降低舰船上姿态信息的精度,影响舰载武器系统的作战效能,针对这一问题,首先对舰船的变形进行理论分析,计算舰船所承受的波浪载荷,将波浪载荷加载到舰船的有限元模型,经计算得到的甲板各节点的角位移及线位移信息,以此来分析舰船的变形。在舰船的关键战位点安装由陀螺仪和加速度计组成的惯性测量单元(IMU),将IMU的输出信息与舰船主惯导的输出信息进行匹配,设计舰船变形估计的卡尔曼滤波器,实时估计IMU安装处的甲板变形角,为舰载武器装备提供准确的局部姿态信息,实验结果证明了所提方法的有效性。  相似文献   

6.
船体变形的监测方法及其对航向姿态信息的修正   总被引:5,自引:0,他引:5  
分析了船体变形的原因、种类,以及船体变形对航姿信息的影响;介绍了监测船体变形的四种结构力学方法和包括惯性测量匹配法在内的三种船舶航行实时监测法,以及GPS姿态测量在船体变形监测中的应用。着重讨论了惯性测量匹配法测定船体变形技术在火控系统、舰载飞机和舰载导弹惯导系统传递对准、磁测量船、其它物理测量船等方面的应用。最后针对位于舰船的中心航姿系统和局部基准部位的陀螺和加速度计等测量部件的不同配置,详细给出了用惯性测量匹配法测定并消除船体变形影响的三种实施方案,比较了各方案的特点、计算过程和系统输出数据。这些方案对于在役舰船和现代舰船的船体变形监测和航向姿态修正具有借鉴作用。  相似文献   

7.
惯性测量单元(IMU)用来为舰载武器系统提供准确的姿态并实时监测舰船甲板的变形,对其数目和位置进行优化具有重要的实用价值.提出了多IMU优化布局的原则,建立了舰载IMU优化布局的数学模型,采用遗传算法对IMU的布局进行了优化求解。仿真结果表明,舰载IMU的布局是影响甲板变形估计精度的一个重要因素,通过对IMU的布局进行优化,减少了舰载武器系统所需IMU的数量;利用优化布局后IMU的输出信息对全舰甲板变形进行估计,估计精度有很大提高。  相似文献   

8.
为了提高卫星姿态测量系统的姿态估计精度,研究设计了一个模糊神经网络,对各姿态传感器的输出信号进行综合处理。研究表明:此方法可以使测量精度得以很大提高。  相似文献   

9.
随着舰载武器系统的发展,对惯性导航系统姿态测量精度要求不断提高,因此对惯导系统姿态测量精度的评估与验证成为惯性测试技术中的关键问题之一,特别是针对动态条件下的评定。对此提出了一种惯导系统姿态信息测量精度的动态评估方法,该方法是由差分GPS测量系统、甲板经纬仪、综合测量靶标等设备组成的外测系统来实现。该外测系统通过外测定位数据、速度数据、航向数据与惯导系统相关数据进行比对达到惯导系统精度评估的目的。经过实船验证,该动态评估方法实测结果优于20〞,满足性能指标的要求。该方法的提出有效提高了惯导系统姿态信息的动态评估的效率,具有很好的实际应用价值。  相似文献   

10.
为了测量编队航行中的舰船相对位置信息,从而进行相对导航,研究采用GPS卫星的伪距信息,通过编队通信链,交换目标船和跟踪船的观测到相同卫星的伪距信息,进行伪距单差差分。以伪距差分信息作为观测量,以跟踪船相对目标船的位置信息作为状态量,建立了跟踪船相对目标船的位置信息解算模型,利用最小二乘法解算跟踪船相对目标船的位置信息,以满足编队舰船间的相对导航信息需求。将相对位置信息解算模型和方法应用于实测试验,数据处理结果表明,相对距离测量精度优于0.2 m,方位精度优于5°,相对距离信息完全满足了舰船相对导航的需求,相对方位信息基本满足舰船相对导航的需求。  相似文献   

11.
This paper reports the development of a vibration monitoring system for wind turbine blades. This system is used to estimate the deflection at the tip blade on a wind turbine tower. Technical accidents of wind turbine blades have become increasingly common. Thus, regular monitoring of the blades is very important to prevent breakdowns, especially in cases when the blades begin to vibrate excessively. The monitoring system developed in this study satisfies two main objectives for practicality. First, our system is easy to install on existing wind turbines. Second, blade deflection is measured in real time. Our system can be operated using a few strain gages attached at the blade root, and the deflection is calculated based on the monitored stress. Thus, direct measurement of deflection at the blade tip is unnecessary. An estimation algorithm for this purpose is adopted based on the experimental modal analysis. This paper focuses on the evaluation of the estimation algorithm to investigate the feasibility of our system. Basic experiments were conducted using a simple blade model of a 300 W scaled wind turbine under rotation. Signals from the strain gages were acquired by a sensor network and sent to a computer through a wireless connection. The results show that the estimation accuracy is acceptably high. Therefore, we conclude that our proposed system is practical.  相似文献   

12.
Non-linear dynamics behavior of a thin isotropic laminate in a simply supported boundary condition is studied for its response with both mechanical and thermal loads in effect. The thermal effects of both the in-plane and transverse non-uniform temperature variations in steady-state are considered. The equation of motion for the laminate deflection is reduced to the Duffing equation in a decoupled modal form by means of a generalized Galerkin's method. The stress field as a function of deflection and temperature variation is also obtained in a plane stress condition for its non-linear elastic behavior with von Karman strain field.For an exemplary laminated microstructure used as a printed wiring board, it is found that a high rise of the in-plane temperature increases the resonance frequency and could significantly increase the stresses of the lamina. The through thickness temperature variation has no significant effect on the deflection. Failure analysis is also made based on the composite failure criteria for a laminate to identify the critical mechanical and thermal loads.  相似文献   

13.
In structural modal analysis and modal testing, an important but difficult task is to match the identified natural frequencies and the corresponding modal deflections. This process is called the modal recognition in this paper. There were some treatments towards this problem for the lumped parameter structural models. For the distributed parameter models, however, little research has been reported on the modal recognition problem. In this paper, a strain-energy criterion for modal recognition has been developed. As an example, a distributed parameter model for a two-beam structural system has been formulated, which is expected to simulate the dynamics of a two-arm manipulating system fixed on a shuttle. Transfer matrix method has been used to set up the dynamic equation of the system. The natural frequencies are obtained from the solution of the characteristics equation. Consequently, the mode shape functions are found out analytically.

Strain energy can be viewed as a measure of the structural deformation. When performing modal analysis, we always assume that the structural system is vibrating at a particular natural frequency. The strain energy is, therefore, stored in the deflection caused by such a harmonic motion. The vibration at a particular natural frequency will not produce any strain energy in the other modal components. On the other hand, if a particular mode shape is contributed mostly by the deformation of a specific component of the global structural system, then the great percentage of the total strain energy will be stored in the deformation of that component. Based upon the calculation of the strain energy in the structural components we can find out which component is deformed most and in what motion it is deformed, thereby, the mode shape can be detected. The computer simulation demonstrated that the strain energy indicated an essentially perfect recognition of the identified natural frequencies with the corresponding mode shapes. The creation of the strain-energy criterion consummates the procedure of the distributed parameter modeling, modal identification and parameter estimation.  相似文献   


14.
In this paper, we develop a method to estimate the bridge deflection using fiber optic Bragg-grating (FBG) strain sensors. For most structural evaluation of bridge integrity, it is very important to measure the geometric profile, which is a major factor representing the global behavior of civil structures, especially bridges. In the past, because of the lack of appropriate methods to measure the deflection curve of bridges on site, the measurement of deflection has been restricted to just a few discrete points along the bridge, and the measuring points have been limited to the locations installed with displacement transducers. However, by applying classical beam theory, a formula is rearranged to estimate the continuously deflected profile by using strains measured directly from several points. In addition, FBG strain sensors, which are electromagnetic, noise-free and multipoint measurable, are employed to obtain flexural strains more accurately and stably. The regression analysis is performed to obtain a strain function from the measured strain data. Finally, the deflection curve can be estimated by applying the strain function to the formula. An experimental test has also been carried out to verify the developed method.  相似文献   

15.
The sampling Moiré(SM) method is one of the vision-based non-contact deformation measurement methods, which is a powerful tool for structural health monitoring and elucidation of damage mechanisms of materials. In this review, the basic principle of the SM method for measuring the twodimensional displacement and strain distributions is introduced. When the grid is not a standard orthogonal grating and cracks exist on the specimen surface, the measurement methods are also stated. Two of the most typical application examples are described in detail. One is the dynamic deflection measurement of a large-scale concrete bridge, and the other is the residual thermal strain measurement of small-scale flip chip packages. Several further development points of this method are pointed out. The SM method is expected to be used for deformation measurement of various structures and materials for residual stress evaluation, crack location prediction, and crack growth evaluation on broad scales.  相似文献   

16.
杨坚  董聪 《计算力学学报》2019,36(2):290-296
针对结构损伤识别中的有限测点问题和测试噪声问题,提出一种基于模型修正法的损伤识别方法,仅利用结构的低阶频率和相应的不完备振型进行损伤识别。基于动力缩聚法构造参数化的振型扩展矩阵,解决振型不完备的问题,然后根据交叉模型交叉模态法CMCM(cross-model cross-mode)构造约束方程,并使用Hestenes-Powell增广拉格朗日乘子法求解约束优化问题,从而根据优化问题的最优解判断出损伤位置和损伤程度。在模态数据包含测试噪声的情况下,提出一种改进的CMCM方法,以减小测试噪声对损伤识别结果的影响。对一个25杆平面桁架进行数值仿真实验,结果表明,在3%的噪声水平下,仅需测得损伤结构的前5阶不完备模态,本文方法就能较准确地识别结构损伤。  相似文献   

17.
郭惠勇  袁和发  何清林 《应用力学学报》2020,(1):365-371,I0025,I0026
为了解决塔架结构的损伤识别问题,提出了基于应变能和改进云推理算法的损伤识别方法。首先描述了云模型的基本理论和数字特征,并给出了模态应变能的基本公式;然后分析了X条件云发生器和Y条件云发生器的基本算法和运行步骤,借助灰云模型建立相应的前件云和后件云规则,考虑了测量噪声的影响,利用云发生器生成多组云滴,并利用多模式下云滴的确定度和生成值构建了基本云推理算法及其损伤识别指标。基本云推理算法中常会产生不均匀发散的云滴,从而使计算结果产生一定的偏差,为了降低云滴发散产生的偏差影响,提出了基于损伤模式数量加权的云推理改进策略。计算结果表明:云推理算法可以较好地应用于塔架结构的损伤识别,其识别结果明显优于传统的应变能耗散率指标方法;而改进云推理算法进一步提高了识别的精度,优于基本云推理算法。  相似文献   

18.
A two-stage method is proposed here to properly identify the site and extent of multiple damage cases in structural systems. In the first stage, a modal strain energy based index (MSEBI) is presented to precisely locate the eventual damage of a structure. The modal strain energy is calculated using the modal analysis information extracted from a finite element modeling. In the second stage, the extent of actual damage is determined via a particle swarm optimization (PSO) using the first stage results. Two illustrative test examples are considered to assess the performance of the proposed method. Numerical results indicate that the combination of MSEBI and PSO can provide a reliable tool to accurately identify the multiple structural damage.  相似文献   

19.
Xie  W. C.  Lee  H. P.  Lim  S. P. 《Nonlinear dynamics》2003,31(3):243-256
A nonlinear modal analysis approach based on the invariant manifoldmethod proposed earlier by Boivin et al. [10] is applied in this paperto perform the dynamic analysis of a micro switch. The micro switch ismodeled as a clamped-clamped microbeam subjected to a transverseelectrostatic force. Two kinds of nonlinearities are encountered in thenonlinear system: geometric nonlinearity of the microbeam associatedwith large deflection, and nonlinear coupling between two energydomains. Using Galerkin method, the nonlinear partial differentialgoverning equation is decoupled into a set of nonlinear ordinarydifferential equations. Based on the invariant manifold method, theassociated nonlinear modal shapes, and modal motion governing equationsare obtained. The equation of motion restricted to these manifolds,which provide the dynamics of the associated normal modes, are solved bythe approach of nonlinear normal forms. Nonlinearities and the pull-inphenomena are examined. The numerical results are compared with thoseobtained from the finite difference method. The estimate for the pull-involtage of the micro device is also presented.  相似文献   

20.
In remote sensing or laser communication space missions, spacecraft need fast maneuver and fast stabilization in order to accomplish agile imaging and attitude tracking tasks. However, fast attitude maneuvers can easily cause elastic deformations and vibrations in flexible appendages of the spacecraft. This paper focuses on this problem and deals with the combined control of fast attitude maneuver and sta- bilization for large complex spacecraft. The mathematical model of complex spacecraft with flexible appendages and momentum bias actuators on board is presented. Based on the plant model and combined with the feedback controller, modal parameters of the closed-loop system are calculated, and a multiple mode input shaper utilizing the modal information is designed to suppress vibrations. Aiming at reducing vibrations excited by attitude maneuver, a quintic polynomial form rotation path planning is proposed with constraints on the actuators and the angular velocity taken into account. Attitude maneuver simulation results of the control systems with input shaper or path planning in loop are sepa- rately analyzed, and based on the analysis, a combined control strategy is presented with both path planning and input shaper in loop. Simulation results show that the combined control strategy satisfies the complex spacecraft's require- ment of fast maneuver and stabilization with the actuators' torque limitation satisfied at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号