首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The syntheses, crystal structures determined by single-crystal X-ray diffraction, and characterizations of new Mo(6) cluster chalcobromides and cyano-substituted compounds with 24 valence electrons per Mo(6) cluster (VEC = 24), are presented in this work. The structures of Cs(4)Mo(6)Br(12)S(2) and Cs(4)Mo(6)Br(12)Se(2) prepared by solid state routes are based on the novel [(Mo(6)Br(i)(6)Y(i)(2))Br(a)(6)](4)(-) (Y = S, Se) discrete units in which two chalcogen and six bromine ligands randomly occupy the inner positions, while the six apical ones are fully occupied by bromine atoms. The interaction of these two compounds with aqueous KCN solution results in apical ligand exchange giving the two first Mo(6) cyano-chalcohalides: Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)S(2))(CN)(6)](3).16H(2)O and Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)Se(2))(CN)(6)](3).16H(2)O. Their crystal structures, built from the original [(Mo(6)Br(i)(6)Y(i)(2))(CN)(a)(6)](4)(-) discrete units, will be compared to those of the two solid state precursors and other previously reported Mo(6) cluster compounds. Their redox properties and (77)Se NMR characterizations will be presented. Crystal data: Cs(4)Mo(6)Br(12)S(2), orthorhombic, Pbca (No. 61), a = 11.511(5) A, b = 18.772(5) A, c = 28.381 A (5), Z = 8; Cs(4)Mo(6)Br(12)Se(2), Pbca (No. 61), a = 11.6237(1) A, b = 18.9447(1) A, c = 28.4874(1) A, Z = 8; Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)S(2))(CN)(6)](3).16H(2)O, Pm-3m (No. 221), a = 17.1969(4) A, Z = 1; Cs(0.4)K(0.6)(Et(4)N)(11)[(Mo(6)Br(6)Se(2))(CN)(6)](3).16H(2)O, Pm-3m (No. 221), a = 17.235(5) A, Z = 1.  相似文献   

2.
By interaction of MoX(3)(THF)(3) with [Cat]X in THF, the salts [Cat][MoX(4)(THF)(2)] have been synthesized [X = I, Cat = PPh(4), NBu(4), NPr(4), (Ph(3)P)(2)N; X = Br, Cat = NBu(4), PPh(4) (Ph(3)P)(2)N]. Mixed-halide species [MoX(3)Y(THF)(2)](-) (X, Y = Cl, Br, I) have also been generated in solution and investigated by (1)H-NMR. When the tetraiodo, tetrabromo, and mixed bromoiodo salts are dissolved in CH(2)Cl(2), clean loss of all coordinated THF is observed by (1)H-NMR. On the other hand, [MoCl(4)(THF)(2)](-) loses only 1.5 THF/Mo. The salts [Cat](3)[Mo(3)X(12)] (X = Br, I) have been isolated from [Cat][MoX(4)(THF)(2)] or by running the reaction between MoX(3)(THF)(3) and [Cat]X directly in CH(2)Cl(2). The crystal structure of [PPh(4)](3)[Mo(3)I(12)] exhibits a linear face-sharing trioctahedron for the trianion: triclinic, space group P&onemacr;; a = 11.385(2), b = 12.697(3), c = 16.849(2) ?; alpha = 76.65(2), beta = 71.967(12), gamma = 84.56(2) degrees; Z = 1; 431 parameters and 3957 data with I > 2sigma(I). The metal-metal distance is 3.258(2) ?. Structural and magnetic data are consistent with the presence of a metal-metal sigma bond order of (1)/(2) and with the remaining 7 electrons being located in 7 substantially nonbonding orbitals. The ground state of the molecule is predicted to be subject to a Jahn-Teller distortion, which is experimentally apparent from the nature of the thermal ellipsoid of the central Mo atom. The [Mo(3)X(12)](3)(-) ions reacts with phosphines (PMe(3), dppe) to form products of lower nuclearity by rupture of the bridging Mo-X bonds.  相似文献   

3.
Resonance Raman spectra of the cubic metal-halide complexes having the general formula [M(6)X(8)Y(6)](2)(-) (M = Mo or W; X, Y = Cl, Br, or I) are reported. The three totally symmetric fundamental vibrations of these complexes are identified. The extensive mixing of the symmetry coordinates that compose the symmetric normal modes expected in these systems is not observed. Instead the "group-frequency" approximation is valid. Furthermore, the force constants of both the apical and face-bridging metal-halide bonds are insensitive to the identity of either the metal or the halide. Raman spectra of related complexes with methoxy and benzenethiol groups as ligands are reported along with the structural data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2). Crystal data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2) at -156 degrees C: monoclinic space group P2(1)/c; a = 12.588(3), b = 17.471(5), c = 20.646(2) ?; beta = 118.53(1) degrees, V = 3223.4 ?(3); d(calcd) = 1.664 g cm(-)(3); Z = 2.  相似文献   

4.
1INTRODUCTION Molybdenum(II)halide clusters containing[Mo6-X8]4 cores have been the subject of interest for over five decades[1].This octahedral cluster-type comple-xes comprise an important,and in a sense archetypal,class of higher nuclearity transition metal cluster com-plexes.Their high symmetry,photochemical and pho-tophysical properties as well as structural relation-ships to cluster complexes of other elements exhibit significant interest[2].In addition,there is a structural simila…  相似文献   

5.
New complexes (Bu(4)N)(2)[Mo(6)X(8)(n-C(3)F(7)COO)(6)] (X = Br, I) display extraordinarily bright long-lived red phosphorescence both in solution and solid phases, with the highest emission quantum yields and the longest emission lifetimes among hexanuclear metal cluster complexes of Mo, W and Re, hitherto reported.  相似文献   

6.
7.
Heating WTe(2), Te, and Br(2) at 390 degrees C followed by extraction with KCN gives [W(3)Te(7)(CN)(6)](2-). Crystal structures of double salts Cs(3.5)K{[W(3)Te(7)(CN)(6)]Br}Br(1.5).4.5H(2)O (1), Cs(2)K(4){[W(3)Te(7)(CN)(6)](2)Cl}Cl.5H(2)O (2), and (Ph(4)P)(3){[W(3)Te(7)(CN)(6)]Br}.H(2)O (3) reveal short Te(2)...X (X = Cl, Br) contacts. Reaction of polymeric Mo(3)Se(7)Br(4) with KNCSe melt gives [Mo(3)Se(7)(CN)(6)](2-). Reactions of polymeric Mo(3)S(7)Br(4) and Mo(3)Te(7)I(4) with KNCSe melt (200-220 degrees C) all give as final product [Mo(3)Se(7)(CN)(6)](2)(-) via intermediate formation of [Mo(3)S(4)Se(3)(CN)(6)](2-)/[Mo(3)SSe(6)(CN)(6)](2-) and of [Mo(3)Te(4)Se(3)(CN)(6)](2-), respectively, as was shown by ESI-MS. (NH(4))(1.5)K(3){[Mo(3)Se(7)(CN)(6)]I}I(1.5).4.5H(2)O (4) was isolated and structurally characterized. Reactions of W(3)Q(7)Br(4) (Q = S, Se) with KNCSe lead to [W(3)Q(4)(CN)(9)](5-). Heating W(3)Te(7)Br(4) in KCNSe melt gives a complicated mixture of W(3)Q(7) and W(3)Q(4) derivatives, as was shown by ESI-MS, from which E(3)[W(3)(mu(3)-Te)(mu-TeSe)(3)(CN)(6)]Br.6H(2)O (5) and K(5)[W(3)(mu(3)-Te)(mu-Se)(3)(CN)(9)] (6) were isolated. X-ray analysis of 5 reveals the presence of a new TeSe(2-) ligand. The complexes were characterized by IR, Raman, electronic, and (77)Se and (125)Te NMR spectra and by ESI mass spectrometry.  相似文献   

8.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

9.
Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.  相似文献   

10.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

11.
New ternary and quaternary molybdenum cluster chalcohalides were obtained by high-temperature reactions between Mo, chalcogens, and halogens in evacuated ampules. The crystal structures of [Mo3Se7(TeBr3)Br2]2[Te2Br10] (1), [Mo3Se7(TeI3)I2]I (2), and [Mo3Te7(TeI3)3]2(I)(TeI3) (3) were determined by single-crystal X-ray diffraction. The structures of 1 and 2 consist of positively charged zigzag chains infinity1 [Mo3Se7(TeX3)X4/2] (X=Br, I), with Te2Br102- and I-, respectively, as counterions. The TeI3- and TeBr3- ions function as bidentate ligands in 1 and 2. In 3, TeI3- is not coordinated to the metal but acts as a counterion to the [Mo3Te7(TeI3)3]+ cluster cation.  相似文献   

12.
Wolff M  Okrut A  Feldmann C 《Inorganic chemistry》2011,50(22):11683-11694
The five polyhalides [(Ph)(3)PBr][Br(7)], [(Bz)(Ph)(3)P](2)[Br(8)], [(n-Bu)(3)MeN](2)[Br(20)], [C(4)MPyr](2)[Br(20)] ([C(4)MPyr] = N-butyl-N-methylpyrrolidinium), and [(Ph)(3)PCl](2)[Cl(2)I(14)] were prepared by the reaction of dibromine and iodine monochloride in ionic liquids. The compounds [(Ph)(3)PBr][Br(7)] and [(Bz)(Ph)(3)P](2)[Br(8)] contain discrete pyramidal [Br(7)](-) and Z-shaped [Br(8)](2-) polybromide anions. [(n-Bu)(3)MeN](2)[Br(20)] and [C(4)MPyr](2)[Br(20)] exhibit new infinite two- and three-dimensional polybromide networks and contain the highest percentage of dibromine ever observed in a compound. [(Ph)(3)PCl](2)[Cl(2)I(14)] also consists of a three-dimensional network and is the first example of an infinite polyiodine chloride. All compounds were obtained from ionic liquids as the solvent that, on the one hand, guarantees for a high stability against strongly oxidizing Br(2) and ICl and that, on the other hand, reduces the high volatility of the molecular halogens.  相似文献   

13.
Two new anions [Nb(6)F(i)(6)X(i)(6)(NCS)(a)(6)](4-)(X = Br, I) based on octahedral niobium clusters with edge-bridging F ligands have been prepared by reaction of Cs(3)Nb(6)F(6)Br(12) and Cs(4)Nb(6)F(8.5)I(9.5) with aqueous solution of KSCN. The anions were isolated as (Et(4)N)(6)[Nb(6)F(6)Br(6)(NCS)(6)]Br(2) (1)and Cs(1.6)K(2.4)[Nb(6)F(6)I(6)(NCS)(6)] (2) salts.  相似文献   

14.
Two enantiomers of [Bu(4)N](3)[Cu(3)(mnt)(3)] () formed by Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2-)) and CuCl in a 1 : 1 molar ratio react further with MCl (M = Cu or Ag) involving both the enantiomers of to produce the larger complex, [Bu(4)N](4)[Cu(6)M(2)(mnt)(6)] (M = Cu (2), Ag (3)) from which the capped Cu(+) or Ag(+) ion can readily be removed by Bu(4)NX (X = Cl, Br), reverting or back to . Such reversal does not work with non-coordinating anions like BF(4)(-), ClO(4)(-) and PF(6)(-).  相似文献   

15.
The tetra-n-butylammonium (TBA) salts of [((i)PrO)TiMo(5)O(18)](3-) 1 and [((i)BuO)TiMo(5)O(18)](3-) 2 were prepared by hydrolysis of mixtures of (TBA)(2)[Mo(2)O(7)], (TBA)(4)α-[Mo(8)O(26)] and Ti(OR)(4) (R = (i)Pr or (i)Bu) in acetonitrile. Treatment of (TBA)(3)1 with alcohols ROH afforded primary and tertiary alkoxide derivatives [(RO)TiMo(5)O(18)](3-) (R = Me 3, (t)Bu 4), whilst aryloxides [(ArO)TiMo(5)O(18)](3-) were prepared by reacting 1 with phenols ArOH (Ar = C(6)H(4)Me-4 5, and C(6)H(4)CHO-2 6). Oxo-bridged [(μ-O)(TiMo(5)O(18))(2)](6-)7 rather than the hydroxo derivative [(HO)TiMo(5)O(18)](3-) was obtained upon hydrolysis of 1. X-Ray crystal structures of TBA salts of anions 3-7 show that titanium is six-coordinate in all cases, although titanium sites are disordered over two trans positions in 3. Mo-O bond length alternation is observed in the Mo(4)O(4) planes of 4 and 7 and in one of the two independent anions in the structure of 3. In solution, (17)O NMR spectra are consistent with the higher anionic charge compared to [Mo(6)O(19)](2-) and reveal an order of basicity for the anions [LM'Mo(5)O(18)](3-) associated with the ability of {LM'}(3+) to donate/withdraw electron density from {Mo(5)O(18)}(6-). Protonolysis reactions of 1 and 3 were slower than for tungstate analogues and the possibility of initial protonation at TiOM (M = Mo) rather than TiOR (M = W) in a proton-assisted S(N)1 mechanism for ligand exchange in [(RO)TiM(5)O(18)](3-) is discussed.  相似文献   

16.
Four salts have been isolated combining the triarylmethane dye cations pararosaniline (PR(+)) and crystal violet (CV(+)) with the hexametalates [M(6)O(19)](2-) (M = Mo, W). A new hexatungstic acid H(2)[W(6)O(19)]·4dma (dma = dimethylacetamide) was isolated and is a useful synthon for hexatungstate salts. Single-crystal X-ray diffraction confirmed the presence of PR(+) and [Mo(6)O(19)](2-) ions in [PR](2)[Mo(6)O(19)]·6dmf (dmf = dimethylformamide). A number of charge-assisted hydrogen bonds N-H···O exist between the cation -NH(2) functions and the anion oxygen atoms. Comparative cyclic voltammetry of salts [A]Cl (A = PR, CV), [Bu(4)N](2)[M(6)O(19)](2-) and A(2)[M(6)O(19)] was established in MeCN and Me(2)SO solutions and of solids in contact with the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [emim][tfsa]. In the molecular solvents, the reversible potential for the process [Mo(6)O(19)](2-/3-) is less negative than the first reduction processes of the dye cations. In contrast, that for [W(6)O(19)](2-/3-) is more negative. Spectro-electrochemistry and bulk electrolysis experiments reveal significantly different pathways in the two cases. In contrast, in the [emim][tfsa] medium, a positive shift in reduction potential of at least 400 mV is seen for the anion processes but relatively little change for the dye cation processes. This means that initial reduction of the anions always precedes that of the dyes, providing significant simplification of the complex voltammetric data. Chemically modified electrodes can be used in the ionic liquid because of slow dissolution kinetics. However, reduced anion salts dissolve rapidly, allowing dissolved phase electrochemistry to be examined. The electrochemistries of the oxidized salts A(2)[M(6)O(19)] are essentially those of the individual ions, although low level interaction of A(+) with reduced anions [M(6)O(19)](3-,4-) is evident. The work establishes protocols for synthesis and handling of intensely absorbing and relatively insoluble salts which can now be applied to systems containing more complex polyoxometalate anions.  相似文献   

17.
[NH(4)](2)Mn(3)(H(2)O)(4)[Mo(CN)(7)](2).4H(2)O (1) has been synthesized by slow diffusion of aqueous solutions containing K(4)[Mo(CN)(7)].2H(2)O, [Mn(H(2)O)(6)](NO(3))(2), and (NH(4))NO(3). Compound 1 crystallizes in the monoclinic C2/c space group. The basic motif of the three-dimensional structure consists of a Mo1-Mn1 gridlike sheet parallel to the bc plane. Two of these sheets are connected through CN-Mn2-NC linkages to form a bilayer reminiscent of the K(2)Mn(3)(H(2)O)(6)[Mo(CN)(7)](2).6H(2)O (2) two-dimensional structure. In 1, [NH(4)](+) cations allow these bilayers to be connected through direct Mo1-CN-Mn1 bridges to form a three-dimensional network, whereas in 2, they are isolated by (H(2)O)K(+) cations. As shown by the magnetic measurements, this increase of dimensionality by counterion substitution induces an enhancement of the ferrimagnetic critical temperature from 39 K in 2 to 53 K in 1.  相似文献   

18.
The title complex L3Y(L = [O-4,6-di-tBu-C6H2-2-CH{CH(iPr2NCHCHN) }]) has been synthesized by the reaction of LiY[N(iPr) 2]4 with H2LCl and LiBu in a 1:3:2 molar ratio at 0 ℃ in THF,and characterized by single-crystal X-ray diffraction. It crystallizes in monoclinic,space group P21 with a = 14.3612(16) ,b = 14.7524(14) ,c = 16.898(2) ,β = 105.708(3) o,V = 3446.3(6) 3,Mr = 1203.50,Z = 2,Dc = 1.160 Mg/m3,μ(MoKα) = 0.90 mm-1 and F(000) = 1296. The structure was refined to R = 0.050 and wR = 0.110 for 10213 observed reflections with I > 2σ(I) . The Y ion is coordinated to three phenoxo groups and three NHC ligands to form a distorted octahedral geometry. The temperature effect on the reaction leads to the 1,2-benzyl migration of NHC ligand to form the title complex.  相似文献   

19.
Sun C  Li Y  Wang E  Xiao D  An H  Xu L 《Inorganic chemistry》2007,46(5):1563-1574
By synthesizing the novel molybdenum arsenate complexes, we have obtained eight new structures, namely, (4,4'-bipy)[Zn(4,4'-bipy)2(H2O)2]2[(ZnO6)(AsIII3O3)2Mo6O18].7H2O, 1, [Zn(phen)2(H2O)]2[(ZnO6)(AsIII3O3)2Mo6O18].4H2O, 2, [Zn(2,2'-bipy)2(H2O)]2[(ZnO6)(AsIII3O3)2Mo6O18].4H2O, 3, [Zn(H4,4'-bipy)2(H2O)4][(ZnO6)(AsIII3O3)2Mo6O18].8H2O, 4, (H24,4'-bipy)[CuI(4,4'-bipy)]2[H2AsV2Mo6O26].H2O, 5, (H24,4'-bipy)3[AsV2Mo6O26].4H2O, 6, (H24,4'-bipy)3[AsV2Mo6O26(H2O)].4H2O, 7, and (H24,4'-bipy)2.5(H3O)[AsV2Mo6O26(H2O)].1.25H2O, 8 (4,4'-bipy = 4,4'-bipyridine, 2,2'-bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline). These structures were determined by single-crystal X-ray diffraction analysis and were further characterized by elemental analysis, IR, XPS spectroscopy, and TG analysis. The structure of 1 is constructed from two-dimensional square gridlike sheets linked by the polyanions [(ZnO6)(AsIII3O3)2Mo6O18]4- via hydrogen-bonding interactions to form a three-dimensional supramolecular framework with two types of channels. Compounds 2 and 3 display similar bisupported structures. Compound 4 features a three-dimensional supramolecular architecture. Compound 5 possesses a 1D infinite ladderlike ribbon. Compounds 6-8 are discrete structures exhibiting three isomeric forms of [HxAs2Mo6O26](6-x)-. Furthermore, compound 8 represents a new isomer B'-[As2Mo6O26(H2O)]6-. In addition, the fluorescent properties of compounds 1-3 are reported.  相似文献   

20.
The first integrally oxidized metal-free phthalocyanine compounds have been synthesized by chemical oxidation. Phthalocyanine (H(2)(pc), pc = phthalocyaninato) was oxidized with IBr to afford the compounds [H(2)(pc)][IBr(2)] (1) and [H(2)(pc)](2)[IBr(2)]BrAC(10)H(7)Br (2), whose structures were determined by means of single-crystal X-ray diffraction methods: [H(2)(pc)][IBr(2)], P2(1)/c, a = 8.0272(9) A, b = 21.258(2) A, c = 18.1439(2) A, beta = 113.975(2) degrees, V = 2828.8(5) A(3), T = 153 K, Z = 4; [H(2)(pc)](2)[IBr(2)]Br.C(10)H(7)Br, P, a = 8.4724(6) A, b = 13.5794(10) A, c = 13.8403(10) A, alpha = 90.854(1) degrees, beta = 103.417(1) degrees, gamma = 97.049(1)E degrees, V = 1535.61(19) A(3), T = 153 K, Z = 1. The extended structure of [H(2)(pc)][IBr(2)] comprises slipped columns of pc rings stacked along the a axis in adjacent columns at approximately 70 degrees to one another. IBr(2-) ions occupy the interstitial columns. The extended structure of [H(2)(pc)](2)[IBr(2)]Br.C(10)H(7)Br comprises slant stacks of pc rings along the crystallographic a axis with IBr(2-) ions, Br(-) ions, and disordered 1-bromonaphthalene molecules in the adjacent, parallel columns. The overall reaction for the formation of 1 is 2H(2)(pc) + 4IBr --> 2[H(2)(pc)][IBr(2)] + I(2), and the overall reaction for the formation of 2 (not including solvent) is 2H(2)(pc) + 3IBr --> [H(2)(pc)](2)Br[IBr(2)] + I(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号