首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted for the establishment of safe axle loads for sugarcane hauling vehicles beyond which detrimental soil compaction would be induced. The treatments involved running a loaded test vehicle in field strips previously chosen at random. Safe loads were established by testing the level of significance of the difference in induced soil compaction between treated and non-treated sections. Working under soil moisture contents of 21.4–27.1% (dry basis), safe axle loads for two 18.4 × 30 tires were found to be 55.6 and 60.0 kN for sandy clay loam and sandy loam soils with initial dry bulk density about 1.434 g/cm3. These corresponded to ground contact pressures of 111 and 120 kPa, respectively.  相似文献   

2.
Stress state transducers (SSTs) were used to determine the orientation of the major principal stress, σ1, in soil beneath the centeline of an 18.4R38 radial-ply R-1 drive tire operated at 10% slip. Two soils, a sandy loam and a clay loam, were each prepared twice to obtain two density profiles. One profile of each soil had a hardpan and the soil above the hardpan was loose. The soil in the second profile was loosely tilled. The stress state was determined at a depth of 358 mm in the sandy loam and 241 mm in the clay loam soil. The tire was operated at two dynamic loads (13.2 and 25.3 kN), each at two levels of inflation pressure (41 and 124 kPa). When the orientation of σ1 was determined directly beneath the axle, the mean angles of tilt in the direction of travel ranged from 6 to 23 degrees from vertical. Inflation pressure did not significantly affect the angle when the dynamic load was 13.2 kN in the sandy loam soil, and neither inflation pressure nor dynamic load significantly affected the angle in the clay loam soil. When the dynamic load was 25.3 kN in the sandy loam soil, the orientation of the major principal stress determined directly beneath the axle was tilted significantly more in the direction of travel when the tire was at 41 kPa inflation pressure than when at 124 kPa. These changes in stress orientation demonstrate the importance of measuring the complete stress state in soil, rather than stresses along only one line of action. The changing orientation of σ1 as the tire passes over the soil indicates the soil undergoes kneading and supports future investigation of the contribution of changes in stress orientation to soil compaction.  相似文献   

3.
Research was conducted to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop models to assess compaction in agricultural soils. Experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely: clay soil (CS), silty clay loam soil (SCLS), and silty loam soil (SLS). A dimensional analysis technique was used to develop the compaction models. The axle load and the number of tire passes proved to be the most dominant factors which influenced compaction. Up to 13% increase in bulk density and cone index were observed when working at 3 kN axle load in a single pass using a 8.0–16 tire. Most of the compaction occurred during the first three passes of the tire. It was also found that the aspect ratio, tire inflation pressure and soil moisture content have significant effect on soil compaction. The initial cone index did not show significant effect. The compaction models provided good predictions even when tested with actual field data from previous studies. Thus, using the models, a decision support system could be developed which may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific compaction problems.  相似文献   

4.
This paper reports about measurements of the contact area of agricultuural tires in a soil bin. Four tires of the dimensions 12.5/80-18, 13.6–28, 16.9–34 and 16.9–26 were tested on a soft sandy loam. Because the existing models for predicting the footprint are complicated, a simplified model has been established, yielding good results. Measured different contact areas of all four tires are nearly constant related to wheel load except for a small increase at higher loads. Using rated loads and applying the appropriate inflation pressure, the ground pressure of a group of similar tires in loose sandy loam is independent of the tire dimensions. Measured soil compaction under at tire a various wheel loads is compared with results obtained by a mathematical model.  相似文献   

5.
A field experiment was conducted on alluvial soil with sandy loam texture, in a complete randomized design, to determine the compaction of sub-soil layers due to different passes of a test tractor with varying normal loads. The selected normal loads were 4.40, 6.40 and 8.40 kN and the number of passes 1, 6, 11 and 16. The bulk density and cone penetration resistance were measured to determine the compaction at 10 equal intervals of 5 cm down the surface. The observations were used to validate a simulation model on sub-soil compaction due to multiple passes of tractor in controlled conditions. The bulk density and penetration resistance in 0–15 cm depth zone continuously increased up to 16 passes of the test tractor, and more at higher normal loads. The compaction was less in different sub-soil layers at lower levels of loads. The impact of higher loads and larger number of passes on compaction was more effective in the soil depth less than 30 cm; for example the normal load of 8.40 kN caused the maximum bulk density of 1.53 Mg/m3 after 16 passes. In 30–45 cm depth layer also, the penetration resistance increased with the increase in loads and number of passes but to a lesser extent which further decreased in the subsoil layers below 45 cm. Overall, the study variables viz. normal load on tractor and number of passes influenced the bulk density and soil penetration resistance in soil depth in the range of 0–45 cm at 1% level of significance. However, beyond 45 cm soil depth, the influence was not significant. The R2 calculated from observed and predicted values with respect to regression equations for bulk density and penetration resistance were 0.7038 and 0.76, respectively.  相似文献   

6.
The tractive performance of an 18.4R38 radial-ply tractor tire with increased flexibility in the tread area was compared to that of a standard tread design. Normal soil-tire interface stresses were measured at four locations on the lug surfaces of both tires operating on Decatur clay loam and Norfolk sandy loam soils. There was a tendency for the increased flexibility in the tread area to provide a higher net traction ratio at the same tractive efficiency as the standard tread design, especially on Decatur clay loam soil. The more flexible tread design reduced the magnitude of peak normal contact stresses across the tire width, which may have implications for reducing soil compaction without compromising tractive performance. The more flexible tire reduced the average normal contact stress by approximately 15% in the sandy loam soil and 23% in the clay loam soil for the range of operating conditions investigated.  相似文献   

7.
Experiments were conducted in a laboratory soil bin to evaluate the performance of coated floats in different soils. Two coating materials were studied, namely enamel and Teflon, and three soil types, namely clay, loam and sandy soil were used for testing. The forces required to overcome the drag of the floats and pull them over the soil surface were measured. The normal loads were varied to 25, 44 and 64 N. The effect of moisture content (db) was evaluated by varying the soil moisture from 21.2 to 62.4% for clay soil, 16.6 to 36.1% for loam soil and 0.7 to 13.8% for sandy soil. All tests were conducted at a constant speed of 0.20 m/s. The performance of the enamel coated float was superior to Teflon and uncoated floats in all soil conditions. In clay and loam soils, the drag force increased initially until the soil moisture content reached the plastic limit. The drag forces showed a decreasing trend once soil moisture exceeded the plastic limit. In sandy soil, the drag force increased with increase in moisture content. The overall reductions for the enamel coated float compared to uncoated float were from 4 to 64% in clay soil, 16 to 46% in loam soil and 26 to 45% in sandy soil. Besides this superior performance, the enamel coated float compared to the other floats showed excellent resistance to wear due to abrasion and superior scouring.  相似文献   

8.
Mathematical models to predict the mode and extent of deformation occurring below sinkage plates are presented in the first part of this paper which encompasses the theoretical approach to the subject. These models are based on previous work by Earl (Earl R. Assessment of the behaviour of field soils during compression. Journal of Agricultural Engineering Research 1997;68:147–57)who developed a procedure to predict the likely mode of deformation using confined compression tests carried out alongside plate sinkage tests. This work suggested that soil behaviour, during increasing compression under a sinkage plate, is governed by three processes; (i) compaction below the plate with constant lateral stress, (ii) compaction with increasing lateral stress, and (iii) displacement and compaction of soil laterally. The aim of this second part to the paper is to observe soil deformation processes occurring below a circular sinkage plate to examine (i) whether the three phases of deformation referred to above occur in practice, and (ii) the accuracy of the models for predicting the soil deformation processes that occur. Tests were carried out on sandy loam soil under controlled conditions in a soil bin. Observations of deformation processes, recorded using long-exposure photography, revealed that during the initial stages of sinkage (a few millimetres), the corresponding disturbance of soil below the plate extended disproportionately further and was cylindrical in form. As sinkage progressed, the deformation process went through a transitional stage before reaching the more widely recognised form of the development of an inverted cone of compacted soil directly below the plate which moved with the plate causing lateral soil movement and compaction. Predictions for a medium density sandy loam were found to be in broad agreement with soil behaviour under a semi-circular sinkage plate observed behind a sheet of tempered glass under controlled conditions in a soil tank.  相似文献   

9.
Theoretical and applied research has shown that the pressure at a point in the subsurface soil is a function of both the surface unit pressure and the extent of the area over which it is applied (total load). Thirty years ago, most of the soil compaction from vehicle traffic was in the plow layer and was removed by normal cultural practices. As equipment has increased in size and mass, machine designers have increased tire sizes to keep the soil surface unit pressure relatively constant. However, the increase in total axle loads is believed to have caused an increase in compaction at any given depth in the soil profile, resulting in significant compaction in the subsoil.Two tires of different sizes, a standard agricultural tire and a flotation tire were used to support equal loads. Soil pressures were measured at three depths in the soil profile directly beneath each of the tires. Two soils were used and each was prepared first in a uniform density profile, and then they were prepared with a simulated traffic pan (layer of higher density) at a depth of approximately 30 cm.Results showed that the presence of a traffic pan in the soil profile caused higher soil pressures above the pan and lower pressures below it than was the case for a uniform soil profile. The soil contact surface of the flotation tire was approximately 22% greater than the agricultural tire. The greater contact surface did reduce soil pressures at the soil surface, of course, but the total axle load was still the dominant factor in the 18–50 cm-depth range used in this study.  相似文献   

10.
A fully instrumented device capable of measuring soil sinkage and shear parameters developed at the Agricultural Engineering Department, University of California, Davis was employed to conduct in situ sinkage and shear tests in a tilled and a farm, dry, Yolo loam soil. Similar tests were also conducted in a tilled, moist Yolo loam soil. An 18.4R38 tire was tested at different levels of inflation pressure and axle loads in these soil conditions. Soil parameters obtained using the instrumented device were related to the traction prediction equation parameters using traction mechanics, principle of conservation of energy and dimensional analysis.  相似文献   

11.
A force platform, which can provide three dimensional forces and moments on its top surface, was used to study force transmitted by human gait below the soil surface in order to understand detonation of antipersonnel landmines. Soils of varying depth were packed on the top surface of the platform to measure the forces transferred from the soil surface. Experimental variables included subjects (people), soil depth, soil type, moisture content, and compaction level. Soils used in this study were sand and sandy loam. There were medium and high two compaction levels for each soil. Sandy loam soil included two moisture contents; sand tested involved two moisture contents and dry sand. Soil depth varies from 0 (bare platform) to 200 mm. Five subjects with different weights were selected and used in this study.The subsoil force and its duration were measured for different subjects at a depth up to 200 mm. The impulse in subsoil was then calculated and used in evaluating the effect of different subjects on the force transfer in soil. The results indicated that loose soil can transfer larger force to subsoil than dense soil; test results showed that heavier subjects also created larger subsoil forces than lighter ones. Whether the effect of soil depth on subsoil impulse was significant was depended on the soil conditions. For the sand with 5.5% moisture content and bulk density of 1800 kg/m3, soil depth significantly affected subsoil impulses. For the sandy loam soil, the mass of subject increased from 50 to 100 kg resulted in 100% increase in subsoil impulses at all four depths; for the sand, the mass of subject increased from 55 to 100 kg approximately. This resulted in 80% increase in subsoil impulses under all four depths regardless of moisture content and bulk density. The results of this study will helpful for designing new equipment and evaluating existing machines for neutralizing landmines.  相似文献   

12.
Enhancement of the potential root growth volume is the main objective of farmers when they establish a conventional tillage system. Therefore, the main function of primary tillage is to increase soil’s structural macroporosity. In spite of this, during secondary tillage operations on these freshly tilled soils, the traffic on seedbeds causes significant increases in soil compaction. The aim of this paper was to quantify soil compaction induced by tractor traffic on a recently tilled non consolidated soil, to match ballast and tyre size on the tractors used during secondary tillage. The work was performed in the South of the Rolling Pampa region, Argentina. Secondary tillage traffic was simulated by one pass of a conventional 2WD tractor, using four configurations of bias-ply rear tyres: 18.4×34, 23.1×30, 18.4×38 and 18.4×38 duals, two ballast conditions were used in each configuration. Soil bulk density and cone index in a 0 to 600 mm profile were measured before and after traffic. Topsoil compaction increased as did ground pressure. Subsoil compaction increased as total axle load increased and was independent from ground pressure. At heavy conditions, topsoil levels always showed higher cone index values. From 150 to 450 mm depth, the same tendency was found, but with smaller increases in the cone index parameter, 22 to 48%, averaging 35%. Finally, at the deepest layer considered, 600 mm, differential increases due to the axle load are great enough as to be considered similar to those found in the upper horizon, 36 to 64%, averaging 55%. On the other hand, bulk density tended to be less responsive than cone index to the traffic treatments. Topsoil compaction can be reduced by matching conventional bias-ply tyres with an optimized axle weight.  相似文献   

13.
A motorized rheometer was developed for determining soil visco-plastic parameters that works on the principle of torsional shear applied to a standard vane with controlled strain rate. Rheological measurements were carried at different soil moisture contents (10%, 13%, 17% and 20% dry basis (gravimetric)) and soil compaction levels (100, 150, 200, 300 and 400 kPa) to find their effects on soil viscosity and yield strength. The values of viscosity of the clay loam soil (29% clay, 24% silt and 47% sand) were found to spread in the range of 53–283 kPa s, and yield stress variation had a span of 4–28 kPa. Increase in soil compaction was accompanied by a sharp increase in soil viscosity, while moisture content affected soil viscosity negatively. Effect of both these parameters was statistically significant (95% confidence interval). Yield stress was positively related to soil compaction and the effect was statistically significant. However, it was negatively related to moisture content and the effect was not statistically significant for the levels of moisture content tested.  相似文献   

14.
A 580/70R38 tractor drive tire with an aspect ratio of 0.756 and a 650/75R32 tire with an aspect ratio of 0.804 were operated at two dynamic loads and two inflation pressures on a sandy loam and a clay loam with loose soil above a hardpan. Soil bulk density and cone index were measured just above the hardpan beneath the centerline and edge of the tires. The bulk densities were essentially equal for the two tires and cone indices were also essentially equal for the two tires. Soil bulk density and cone index increased with increasing dynamic load at constant inflation pressure, and with increasing inflation pressure at constant dynamic load. In comparisons of the centerline and edge locations, soil bulk density and cone index were significantly less beneath the edge than beneath the centerline of the tires. Soil compaction is not likely to be affected by the aspect ratio of radial-ply tractor drive tires when aspect ratios are between 0.75 and 0.80.  相似文献   

15.
High axle loads, duration of strain as well as strain rate due to applied stresses, and field moisture condition have been found to contribute to compaction in the field. Numerous previous investigations on agricultural soil compaction were carried out with relatively dry soil. The aim of this study was to investigate the interrelationships between compaction, applied load, vehicle speed and a certain practical range of soil moisture content through a soil bin investigation of the compaction which results from the passage of a towed and a driven wheel. Soil pressure and the corresponding bulk density were analysed using a model proposed by Bailey et al. (J. agric Engng Res. 33, 257–262 (1986)) and ANOVA techniques. The results showed that compaction was higher at the higher moisture content level for both towed and driven conditions of the wheel, and that it was applied load that had the greatest contributory effect. Also, compaction was higher in the case of the driven wheel as compared to the towed wheel due to the phenomenon of slip sinkage. Bailey's model, it appears, can be utilized in the field for a practical estimation of compaction resulting from the passage of a towed wheel.  相似文献   

16.
The objective of this study was to evaluate the effects of agricultural tire characteristics on variations of wheel load and vibrations transmitted from the ground to the tractor rear axle. The experiments were conducted on an asphalt road and a sandy loam field using a two-wheel-drive self-propelled farm tractor at different combinations of tractor forward speeds of approximately 0.6, 1.6 and 2.6 m/s, and tire inflation pressures of 330 and 80 kPa. During experiments, the vertical wheel load of the left and right rear wheels, and the roll, bounce and pitch accelerations of the rear axle center were measured using strain-gage-based transducers and a triaxial accelerometer. The wavelet and Fourier analyses were applied to measured data in order to investigate the effects of self-excitations due to non-uniformity and lugs of tires on the wheel-load fluctuation and rear axle vibrations. Values for the root-mean-square (RMS) wheel loads and accelerations were not strictly proportional and inversely proportional to the forward speed and tire pressure respectively. The time histories and frequency compositions of synthesized data have shown that tire non-uniformity and tire lugs significantly excited the wheel load and accelerations at their natural frequencies and harmonics. These effects were strongly affected by the forward speed, tire pressure and ground deformation.  相似文献   

17.
Limited studies have been conducted to establish scaling relationships of soil reaction forces and length scales of bulldozer blades using the Discrete Element Method (DEM) technique. With a DEM-based similitude scaling law, performance of industry-scale blades can be predicted at reduced simulation efforts provided a calibrated and validated DEM soil model is developed. DEM material properties were developed to match soil cone penetration testing. The objectives of the study were to develop a DEM soil model for Norfolk sandy loam soil, establish a scaled relationship of soil reaction forces to bulldozer blade length scales (n = 0.24, n = 0.14, n = 0.10, and n = 0.05), and validate the DEM-predicted soil reaction forces on the scaled bulldozer blades to the Norfolk sandy loam soil bin data. Using 3D-scanned and reconstructed DEM soil aggregate shapes, Design of Experiment (DOE) of soil cone penetration testing was used to develop a soil model and a soil-bulldozer blade simulation. A power fit best approximated the relationship between the DEM-predicted soil horizontal forces and the bulldozer blade length scale (n) (R2 = 0.9976). DEM prediction of soil horizontal forces on the bulldozer blades explained the Norfolk sandy loam soil data with a linear regression fit (R2 = 0.9965 and slope = 0.9634).  相似文献   

18.
Three prior state-of-the-art reviews are used as a foundation for this one. Soil compaction research is divided into three areas: (1) Machines designed to compact the soil, or vehicles used intentionally to do so; (2) Incidental compaction of soil by machinery being used for other purposes; and (3) Management practices for controlling undersired soil compaction. Background research is discussed in each category, and the relevant papers for the Eight International Conference are summarized. It is concluded that the soil compaction problem is better understood and more effectively researched today than ever before. Continuation of the trend of the past half century toward larger and heavier agricultural machinery appears to be in jeopardy with the recognition of (1) total axle loads as the basic cause of subsoil compaction and (2) the nearly opposite soil conditions required for effective performance by wheels and crops.  相似文献   

19.
Axisymmetric finite element (FE) method was developed to simulate cone penetration process in layered granular soil. The FE was modeled using ABAQUS/Explicit, a commercially available package. Soil was considered as a non-linear elastic plastic material which was modeled using variable elastic parameters of Young’s Modulus and Poisson’s ratio and Drucker–Prager criterion with yield stress dependent material hardening property. The material hardening parameters of the model were estimated from the USDA-ARS National Soil Dynamics Laboratory – Auburn University (NSDL-AU) soil compaction model. The stress–strain relationship in the NSDLAU compaction model was modified to account for the different soil moisture conditions and the influence of precompression stress states of the soil layers. A surface contact pair (‘slave-master’) algorithm in ABAQUS/Explicit was used to simulate the insertion of a rigid cone (RAX2 ABAQUS element) into deformable and layered soil medium (CAX4R ABAQUS element). The FE formulation was verified using cone penetration data collected on a soil chamber of Norfolk sandy loam soil which was prepared in two compaction treatments that varied in bulk density in the hardpan layer of (1) 1.64 Mg m−3 and (2) 1.71 Mg m−3. The FE model successfully simulated the trend of cone penetration in layered soils indicating the location of the sub-soil compacted (hardpan) layer and peak cone penetration resistance. Modification of the NSDL-AU model to account for the actual soil moisture content and inclusion of the influence of precompression stress into the strain behavior of the NSDL-AU model improved the performance of FE in predicting the peak cone penetration resistance. Modification of the NSDL-AU model resulted in an improvement of about 42% in the finite element-predicted soil cone penetration forces compared with the FE results that used the NSDL-AU ‘virgin’ model.  相似文献   

20.
Esperiements were conducted during the summer of 1979 in which field plots oon s Ste. Rosalie clay soil and a Ste. Amable sandy loam soil were subjected to different levels of compaction by machinery, and subsequently treated by moldboard plowing and discing, chiselling and subsoiling by a winged tool. A silage corn crop was grown on all plots and measurements were made of soil bulk densities, penetration resistance of soils and plant yields. The results indicated that the compaction of the soil, if not subsequently loosened by a tillage operation, caused a marked reduction in plant yields. A nnarrow range of dry bulk density produced the optimum silage corn yields in the two experimental soils. The soil densities in this range were obtained by any of the three tillage treatments, as well as by the rototiller treatment, without machinery traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号