首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White-tailed kite (Elanus leucurus) populations in the 1930s were close to extirpation in the United States. But by the 1940s, an upward trend towards recovery was apparent and continued to their current stable population levels. These dramatic fluctuations in kite numbers may have been related to changes in rodent prey populations due to the conversion of native habitats to agriculture. To address this question, we evaluated the use of stable isotope analysis in determining if a shift in diet could be isotopically differentiated in current and historic kite populations. We first compared delta13C, delta15N, and delta34S values from present-day kite flight feathers and prey fur samples from four locations in California. The total ranges of isotope values for kite and their rodent prey were similar within each site. Carbon isotope values ranged from -27.1 to -22.2 per thousand in Arcata, -26.1 to -16.9 per thousand in Davis, -27.0 to -15.0 per thousand in Cosumnes, and -28.2 to -11.6 per thousand in Santa Barbara. Nitrogen isotope values ranged from 3.2 to 15.7 per thousand in Arcata, 2.8 to 12.7 per thousand in Davis, 4.0 to 15.7 per thousand in Cosumnes, and 1.7 to 20.0 per thousand in Santa Barbara. Sulfur isotope values ranged from -7.8 to 12.4 per thousand in Arcata, -1.1 to 9.2 per thousand in Davis, 0.7 to 10.9 per thousand in Cosumnes, and -8.6 to 15.6 per thousand in Santa Barbara. Carbon, nitrogen, and sulfur isotope values at each site reflect typical trophic enrichments due to physiological processes. At each site, delta13C and delta15N values reflected the influence of a predominantly C3 or a mixed C3/C4 plant community. Sulfur isotope values reflect the influence of predominant marine or terrestrial sulfur sources at each site. However, variability in isotope values may limit the usefulness of such analyses for addressing prey utilization and population dynamics.  相似文献   

2.
Papyrus swamps usually form at the interface between river inlet and open lake. From one such wetland ecosystem (the Kibos system located in the Nyanza Gulf, Lake Victoria, Kenya), three sediment cores were recovered using piston corer in order to determine the fate of organic matter derived from papyrus and possible nutrient pathways in this system. The coring represented a transect from the river through the floating papyrus mat to the lake. Two short cores were retrieved from the lake and river. One long core (2 m) was recovered on a floating papyrus mat. The C:N ratio showed similar trends down core from the three locations. This may possibly be due to diagenic processes such as autolysis, dissolution and microbial mineralisation occurring in the sediments. Statistical analysis through one-way ANOVA revealed no significant differences in the C:N ratios between stations. Results of the stable carbon isotope ratios revealed that the delta(13)C of the river and lake samples were persistently more negative than -20 per thousand over the whole profile indicating possible contribution from terrestrial derived carbon. Regarding the floating mat core, the delta(13)C values ranged from -18.99 per thousand on the top of the floating mat but gradually increased to -16.82 per thousand towards the bottom of the core indicating possible contribution of carbon from Cyperus papyrus that has a delta(13)C value of -13.45+/-0.62 per thousand. Statistical analysis through one-way ANOVA revealed significant differences in the delta(13)C values between stations. The stable nitrogen isotope values were highly positive both in the river and in the lake station (delta(15)N > 10 per thousand), indicating possible contamination from sewage wastes. Values in the swamp were less positive suggesting first, the formation of ammonium depleted in (15)N from intense organic matter mineralisation, secondly indicating the delta(15)N signal of papyrus and, finally that nitrogen fixation processes were possibly occurring in the swamp. Statistical analysis through one-way ANOVA revealed significant differences in the delta(15)N values between stations. The stable isotope findings suggested that carbon derived from papyrus is retained in the swamp. Impoverished oxygen concentration in the swamp suggests high mineralisation of organic matter in the swamp indicating that the retained papyrus-derived carbon is largely respired. We conclude that further studies should be undertaken to determine the respiration rates in the wetland.  相似文献   

3.
Ontogenetic niche shifts in diet are a consequence of changes in body size or resource partitioning between age classes. To better resolve the feeding patterns of the Japanese scallop Mizuhopecten yessoensis, we examined the relative importance of age and size in the diet of this species using stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) from 2006 to 2009. Contribution of food sources was quantified using an isotope mixing model by comparing the muscle tissue isotope ratios to those of suspended particulate organic matter (SPOM) and their zooplankton prey (e.g. micro- and meso-zooplankton). Unlike the δ13C values, which remained constant with age and size, muscle δ15N values were more positively correlated with age accounting for 69?% of variations than size with only 46?%. Increasing 15N values with age suggested that shifts in diet from SPOM to micro- and meso-zooplankton occurred during ontogeny in M. yessoensis. Results of the isotope mixing model indicated that SPOM contribution to scallop’s diet decreased from 68 to 8?% while those of zooplankton increased from 15 to 50?% with increasing age. This study concludes that age-related dietary shift explains the enrichment of 15N, as a result of predation on zooplankton by M. yessoensis.  相似文献   

4.
The isotopic compositions of carbon compounds in landfill leachate provide insights into the biodegradation pathways that dominate the different stages of waste decomposition. In this study, the carbon geochemistry of different carbon pools, environmental stable isotopes and compound-specific isotope analysis (CSIA) of leachate dissolved organic carbon (DOC) fractions and gases show distinctions in leachate biogeochemistry and methane production between the young area of active waste emplacement and the old area of historical emplacement at the Trail Road Landfill (TRL). The active area leachate has low DOC concentrations (<200 mg l(-1)) dominated by fulvic acid (FA=160 mg l(-1)), and produces CH(4) dominantly by CO(2) reduction (D- excess=20.6 per thousand). Leachate generated in the area of older waste has high DOC (>4770 mg l(-1)) dominated by FA (4482 mg l(-1)) and simple fatty acids (acetic=1008 mg l(-1) and propionic=608 mg l(-1)), and produces CH(4) by the acetate fermentation pathway (D- excess=9.8 per thousand). CSIA shows an advanced degradation and a progressive accumulation of (13)C of fatty acids in leachate from the older area. The enriched (13)C value of FA (-20 and-26 per thousand for the older and active parts, respectively,) and of low molecular weight DOC (-8 and-27 per thousand) as well as of the bulk DOC (-21 and-25 per thousand) shows more advanced degradation in the older part of the landfill, which is consistent with the shift in the humic/FA ratios (0.05 and 0.18). The (13)C enrichment of acetate (-12 per thousand) above the (13)C of DOC (-21 per thousand) and of propionic acid (-19 per thousand), in older leachate, suggests that this acetate has not evolved from the simple degradation of larger organic molecules, but by homoacetogenesis from the enriched dissolved inorganic carbon (DIC) pool (8 per thousand) and H(2,) which produce a more enriched (13)C of acetate. In contrast, the (13)C of the minor acetate in the active area (-17 per thousand) indicates that CO(2)-reducing bacteria must be the primary consumers of H(2), which has resulted in enriched (13)C(DIC) (10 per thousand) and depleted (13)C(CH4) (-58 per thousand).  相似文献   

5.
The carbon isotope composition (delta(13)C, per thousand) and discrimination (Delta, per thousand) of old grown North American Pinus ponderosa Dougl. Ex P. et C. Laws. and European Pinus sylvestris L. were determined using trees grown under almost identical growing conditions in a mixed stand in Bralitz, Northeast Germany. Single-tree delta(13)C analyses of tree-ring cellulose of both species were carried out at a yearly resolution for the period 1901-2001 and the results compared with growth (basal area increment). Annual mean delta(13)C values for P. ponderosa ranged from-21.6 per thousand to-25.2 per thousand and for P. sylvestris from-21.4 per thousand to-24.4 per thousand. Accordingly, (13)C discrimination (Delta) showed higher values for P. ponderosa throughout the investigation period. Five characteristic periods of Delta were identified for both the tree species, reflecting positive and negative influences of environmental factors. Good growing conditions such as after-thinning events had a positive effect on Delta, reflecting higher values, while poor conditions like aridity and air pollution had a negative influence, reflecting lower values. The dynamics of Delta were likewise reflected in the growth (basal area increment, BAI). Higher (13)C discrimination values of P. ponderosa led to higher BAIs of P. ponderosa in comparison with P. sylvestris. Correlation function analyses confirmed that P. sylvestris was more dependent on precipitation than P. ponderosa, which showed a closer relationship with temperature. The results confirm that under predominantly dry growing conditions, P. ponderosa showed better growth performance than P. sylvestris, indicating better common intrinsic water-use efficiency and, therefore, higher rates of net photosynthesis at a given transpiration. In view of the prospect of climate change, the results are very significant for assessing both trees' physiological properties and, hence, their potential for coping with future growing conditions.  相似文献   

6.
C4 plant species were proposed to generally represent inferior food sources compared to C3 plants thus are avoided by herbivores, particularly insects. This was tested in semi-aquatic and terrestrial arthropods from Amazonian river-floodplains by carbon isotope discrimination (delta13C). Two semi-aquatic grasshopper species (Stenacris f. fissicauda, Tucavaca gracilis-Acrididae) obtain their carbon during development from specific C4 macrophytes and two semi-aquatic species (Cornops aquaticum-Acrididae, Paulinia acuminata-Pauliniidae) from specific C3 macrophytes. The terrestrial millipede Mestosoma hylaeicum (Paradoxosomatidae) obtains about 45% of its carbon from roots of one C4 macrophyte during the development of immatures whereas adults use other food sources, including C3 trees. Results suggest, that (1) both C4 and C3 plants represent distinct hosts for terrestrial arthropods in Amazonia; (2) immatures may use plant species with a different photosynthetic pathway than adults.  相似文献   

7.
Dual stable isotope analysis in the regulated Colorado River through Grand Canyon National Park, USA, revealed a food web that varied spatially through this arid biome. Down-river enrichment of delta13C data was detected across three trophic levels resulting in shifted food webs. Humpack chub delta13C and delta15N values from muscle plugs and fin clips did not differ significantly. Humpback chub and rainbow trout trophic position is positively correlated with standard length indicating an increase in piscivory by larger fishes. Recovery of the aquatic community from impoundment by Glen Canyon Dam and collecting refinements for stable isotope analysis within large rivers are discussed.  相似文献   

8.
Apple snails Pomacea lineata (SPIX 1827) are widespread in the tropical regions of Brazil as well as in the Pantanal wetland of Mato Grosso in the western part of the country. They have a key position in the Pantanal food web and serve as food for many animals e.g. fishes, birds, and caimans. However, little is known about their feeding preferences and growth rates. Stable isotopes have been used successfully on numerous studies as food source indicator. Therefore, the delta15N and delta13C values of snails from 0.45 to 3.03 cm in length, which were collected in the rainy season from March through May, were analyzed. Snails signatures revealed ambiguous evidence for food preferences. Delta15N and delta13C values ranged between -2.8 and 12.4 per thousand and between -24.2 and -16.4, per thousand respectively. This range of values mirrors the highly variable isotope values of possible food sources comprising C3 and C4 macrophytes. To test whether all common food sources were similarly assimilated, feeding experiments with different diets were conducted. Snail eggs were reared in tanks and offered different but single plants. Snails fed different diets and delta13C values of the food were reflected in the animal tissue. Growth varied considerably in experiments with different diets indicating the preference for certain food sources. Also, the fractionation of nitrogen isotopes between food and animal varied from 0.1 to 17.0 per thousand. The results are explained by different feeding habits, and it is supposed that animals fed either on the plant itself or on bacteria mats growing in the tanks. In an additional experiment juvenile snails were offered one single food with a distinctive C4 grass signature. These snails did not grow detectably, but nevertheless isotope signatures approached to values of the diet.  相似文献   

9.
This preliminary study was designed to determine the extent to which the carbon isotope ratio in four species of lichens was influenced by such features as humidity, rainfall, radioactivity, and air quality. The sampling sites were selected to be at a great distance from any pollution. At the time of sampling, field data (temperature, relative humidity, average monthly precipitation, and radioactivity) were recorded. delta(13)C in whole lichen specimens were determined using standard mass spectrometric techniques with a standard deviation of+/-0.3 per thousand. We have found a weak but negative correlation between delta(13)C and relative humidity, and a positive correlation between delta(13)C and average monthly precipitation at the studied sites. The effects were minor, of the order of 1.5 per thousand for all the lichens. We have examined the correlation between (137)Cs activity concentration of the studied lichens and delta(13)C of these lichens, and we have suggested that fixation of radiocesium does not alter photosynthesis rate. There was a delta(13)C variation with the altitude gradient with less negative delta(13)C values at higher altitude. It is possible that this difference is caused by the ozone and occurred at the high elevations.  相似文献   

10.
Abstract

Dual stable isotope analysis in the regulated Colorado River through Grand Canyon National Park, USA, revealed a food web that varied spatially through this arid biome. Down-river enrichment of δ13C data was detected across three trophic levels resulting in shifted food webs. Humpack chub δ13C and δ15N values from muscle plugs and fin clips did not differ significantly. Humpback chub and rainbow trout trophic position is positively correlated with standard length indicating an increase in piscivory by larger fishes. Recovery of the aquatic community from impoundment by Glen Canyon Dam and collecting refinements for stable isotope analysis within large rivers are discussed.  相似文献   

11.
The stable carbon isotopic composition of dissolved inorganic carbon (delta13C(DIC)) is traditionally determined using either direct precipitation or gas evolution methods in conjunction with offline gas preparation and measurement in a dual-inlet isotope ratio mass spectrometer. A gas evolution method based on continuous-flow technology is described here, which is easy to use and robust. Water samples (100-1500 microl depending on the carbonate alkalinity) are injected into He-filled autosampler vials in the field and analysed on an automated continuous-flow gas preparation system interfaced to an isotope ratio mass spectrometer. Sample analysis time including online preparation is 10 min and overall precision is 0.1 per thousand. This method is thus fast and can easily be automated for handling large sample batches.  相似文献   

12.
Feeding strategies of earthworms and their influence on soil processes are often inferred from morphological, behavioral and physiological traits. We used (13)C and (15)N natural abundance in earthworms, soils and plants to explore patterns of resource utilization by different species of earthworms in three tropical ecosystems in Puerto Rico. In a high altitude dwarf forest, native earthworms Trigaster longissimus and Estherella sp. showed less (15)N enrichment ((15)N = 3-6 per thousand) than exotic Pontoscolex corethrurus ((15)N =7-9 per thousand) indicating different food sources or stronger isotopic discrimination by the latter. Conversely, in a lower altitude tabonuco forest, Estherella sp. and P. corethrurus overlapped completely in (15)N enrichment ((15)N = 6-9 per thousand), suggesting the potential for interspecific competition for N resources. A tabonuco forest converted to pasture contained only P. corethrurus which were less enriched in (15)N than those in the forest sites, but more highly enriched in (13)C suggesting assimilation of C from the predominant C(4) grass. These results support the utility of stable isotopes to delineate resource partitioning and potential competitive interactions among earthworm species. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

13.
Most regions in the tropics undergo high seasonal precipitation that produces cyclic patterns of riverine discharge, resulting in periods characterized by low and high water levels. Many chemical and bio-logical factors are affected by this hydrologic seasonality, and it therefore appeared to be very likely that aquatic food webs would also differ during the low and high water periods. Available carbon sources for fish are thought to be less varied during low water periods, but flooding during high water periods could bring fish into contact with a greater abundance and diversity of food sources such as terrestrial plants or the biofilms that grow on submerged terrestrial plants. At low water levels, higher fish densities may lead to more piscivory and less omnivory when compared with the high water periods. Therefore, trophic links within the fish communities may then be modified by water level changes in tropical reservoirs. To address this prediction, we performed stable isotope analyses of the most common species in Sélingué and Manantali, two large reservoirs in Mali (West Africa). Allochthonous and littoral carbon sources were shown to support fish production to a significant extent, even during low water periods. However, the allochthonous or littoral carbon contributions that sustained the top-predators production were indeed greater during the high water periods as expected. The expected higher omnivory in the high water period might have shortened the food chain when compared with the low water period. Some carnivorous fish species were shown to feed at lower trophic levels during high water periods in both reservoirs, but this was not a general pattern. Flooding did not, therefore, necessarily result in a shorter food chain when water levels were high.  相似文献   

14.
Most regions in the tropics undergo high seasonal precipitation that produces cyclic patterns of riverine discharge, resulting in periods characterized by low and high water levels. Many chemical and bio-logical factors are affected by this hydrologic seasonality, and it therefore appeared to be very likely that aquatic food webs would also differ during the low and high water periods. Available carbon sources for fish are thought to be less varied during low water periods, but flooding during high water periods could bring fish into contact with a greater abundance and diversity of food sources such as terrestrial plants or the biofilms that grow on submerged terrestrial plants. At low water levels, higher fish densities may lead to more piscivory and less omnivory when compared with the high water periods. Therefore, trophic links within the fish communities may then be modified by water level changes in tropical reservoirs. To address this prediction, we performed stable isotope analyses of the most common species in Sélingué and Manantali, two large reservoirs in Mali (West Africa). Allochthonous and littoral carbon sources were shown to support fish production to a significant extent, even during low water periods. However, the allochthonous or littoral carbon contributions that sustained the top-predators production were indeed greater during the high water periods as expected. The expected higher omnivory in the high water period might have shortened the food chain when compared with the low water period. Some carnivorous fish species were shown to feed at lower trophic levels during high water periods in both reservoirs, but this was not a general pattern. Flooding did not, therefore, necessarily result in a shorter food chain when water levels were high.  相似文献   

15.
Gas analyses of the soil atmosphere of lignite mining dumps yielded increased contents of carbon dioxide. To get information about the potential sources and the carbon dioxide releasing capacity of the dumps, samples of dump material were investigated for their contents and isotopic compositions of organic and inorganic carbon as well as the carbon dioxide in the soil atmosphere. The contents of organic and inorganic carbon were found to vary depending on type of dump material. The isotopic composition of the organic carbon ranges between -24.5 and -26.5 per thousand, which is typical for humous materials. The carbonates are found to be of marine origin (delta13C: +0.5 to -1.1 per thousand). By means of the isotope investigations it could be shown that the carbon dioxide in the lignite mining dump arises from these two different sources. Mixing ratios can be calculated using the isotope balance equation. Both reaction paths are associated with oxygen consumption and do not result in an increased gas pressure within the dump.  相似文献   

16.
The use of stable isotope techniques for the reconstruction of diets has increased over the last decade. However, isotopic ratios in an animal are not only affected by the composition of the feed, but also by the amount of feed consumed. An uncertainty of up to 1 per thousand for both delta13C and delta15N values has been observed when the feeding level is unknown. This may have substantial effects on the results of back-calculation. As the feeding level of animals is unknown in nature, an additional indicator for their nutritional status is needed. High feeding levels and a consequent surfeit of dietary energy lead to the synthesis of lipids. In order to test whether the level of lipogenesis could be used as an indicator, Nile tilapia (Oreochromis niloticus) were fed four isonitrogenous and isoenergetic wheat-based semi-synthetic diets with different lipid contents (2.0 %, 4.5 %, 9.5 % and 13.3 %) for eight weeks. Body composition, gross energy content and delta13C values in the lipids and the lipid-free material were determined in diets and fish bodies. The livers of three fish per feeding group were assayed for the activity of two lipogenic enzymes, ATP-citrate lyase and malic enzyme. There was a strong negative correlation between delta13C values in the lipids of the individual fish and the apparent lipid conversion. The activities of lipogenic enzymes decreased with rising lipid content in the diet. The delta13C values in the lipids decreased significantly with increasing specific activity for both enzymes. In this experiment where lipogenesis was influenced by the composition of the diet, it was possible to determine the exact value for the trophic shift in relation to the enzyme activities. Further experiments to investigate the use of enzyme activities in situations where the feeding level of an animal is unknown are recommended.  相似文献   

17.
Calcrete nodules and concretions in unusually large amounts are embedded in the Quaternary clay-rich (Vertisol-type) 'red clay' soil-sedimentary complex at the pediment of the Mátra Mountains (Hungary). Stable isotope signatures were studied in nodules and septarian concretions, uncommon due to their several millimeter sized calcite crystals filling voids and fractures, to reveal their origin. The isotope composition of calcrete covers a wide range: delta18O=-5.9 to-10.4 per thousand and delta13C=-8.9 to-12.3 per thousand (vs. V-PDB). Isotope compositions support pedogenic (sensu stricto) and/or shallow groundwater origin for the calcrete nodules and concretions, the role of 'evolved' (isotopically modified) groundwaters in the formation of secondary carbonate was possibly subordinate. Late-stage, large, Mn-rich euhedral calcite crystals in concretions have the lowest delta13C values, which are interpreted as a result of larger contribution of isotopically light organic carbon due to decomposition of organic matter under reducing conditions. Precipitation of late calcite crystals in concretions occurred in early diagenetic environment after shallow burial of the 'red clay' paleovertisol.  相似文献   

18.
Cestode parasites from freshwater (threespine stickleback, Gasterosteus aculeatus), estuarine (brook charr, Salvelinus fontinalis) and marine (Greenland cod, Gadus ogac) fish from northern Quebec, Canada, were used to investigate the hypotheses that cestode parasites are (13)C and (15)N enriched relative to host food sources, but (15)N depleted with respect to host muscle tissue as a result of differential enrichment during the assimilation of common nutrient sources. Cestode parasites and fish were generally similarly enriched in (13)C with respect to common food sources and, in the case of Greenland cod, cestode parasites were (13)C enriched relative to host tissue. Cestode parasites were also generally (15)N enriched with respect to mean host dietary signatures, but depleted with respect to host muscle tissue. In the case of Greenland cod cestode parasites, no significant (15)N enrichment relative to host dietary signature was observed. Cestode parasites appear generally to experience smaller (15)N enrichment than hosts as a result of trophic transfer of common dietary sources. Differential (15)N enrichment patterns in parasites and fish may be attributed to differences in parasite and host metabolism, particularly the anaerobic and aerobic natures of their respective metabolisms. Results imply that isotope enrichment paradigms developed for the study of aquatic foodwebs cannot be routinely applied to quantitatively assess the role of parasites in aquatic foodwebs and that reference to host muscle tissue measures will not allow accurate characterization of parasite foodweb position. Appropriate reference to assimilated food sources is required to accurately estimate parasite isotopic enrichment patterns and to determine parasite trophic position relative to the host.  相似文献   

19.
Carbon isotopic fractionations in plant materials and those occurring during decomposition have direct implications in studies of short-and longer-term soil organic matter dynamics. Thus the products of decomposition, the evolved CO(2) and the newly formed soil organic matter, may vary in their (13)C signature from that of the original plant material. To evaluate the importance of such fractionation processes, the variations in (13)C signatures between and within plant parts of a tropical grass (Brachiaria humidicola) and tropical legume (Desmodium ovalifolium) were measured and the changes in (13)C content (signatures) during decomposition were monitored over a period of four months. As expected the grass materials were less depleted in (13)C (-11.4 to -11.9 per thousand) than those of the legume (-27.3 to -25.8 per thousand). Root materials of the legume were less (1.5 per thousand) depleted in (13)C compared with the leaves. Plant lignin-C was strongly depleted in (13)C compared with the bulk material by up to 2.5 per thousand in the legume and up to 4.7 per thousand in the grass. Plant materials were subsequently incubated in a sand/nutrient-solution/microbial inoculum mixture. The respiration product CO(2) was trapped in NaOH and precipitated as CaCO(3), suitable for analysis using an automated C/N analyser coupled to an isotope ratio mass spectrometer. Significant depletion in (13)C of the evolved CO(2) was observed during the initial stages of decomposition probably as a result of microbial fractionation as it was not associated with the (13)C signatures of the measured more decomposable fractions (non-acid detergent fibre and cellulose). While the cumulative CO(2)-(13)C signatures of legume materials became slightly enriched with ongoing decomposition, the CO(2)-C of the grass materials remained depleted in (13)C. Associated isotopic fractionation correction factors for source identification of CO(2-)C varied with time and suggested errors of 2-19% in the estimation of the plant-derived C at 119 days of incubation in a soil of an intermediate (-20.0 per thousand) (13)C signature. Analysis of the residual material after 119 days of incubation showed little or no change in the (13)C signature partly due to the incomplete decomposition at the time of harvesting. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Laboratory experiments are useful for estimating the carbon and nitrogen isotope discrimination factors and turnover rates that are critical for drawing field-based inferences on consumer diets using stable isotopes. Although the utility of these discrimination factors is widely recognized, work in terrestrial systems has largely been limited to studies involving mammals and birds. In contrast, scant attention has been paid to the application of isotopic techniques to reptiles, despite their broad diversity in terms of numbers of species as well as their trophic roles. Here we estimate carbon and nitrogen isotope discrimination factors and turnover for the tree lizard (Urosaurus ornatus) using a diet-switch experiment. Lizards were collected from a C4-dominated grassland and then switched to C3-based diet (crickets) in the laboratory. We estimated discrimination by lizard claw tissue as Δ13C?=?1.2?±?0.1?‰ for carbon and Δ15N?=?0.7?±?0.1?‰ (mean?±?1 SE) for nitrogen, with 95?% turnover occurring after ~15.5 days. These estimates should be appropriate for use in trophic studies of U. ornatus, and possibly other related small-bodied insectivorous lizards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号