首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The influence of an electron-vibrational coupling on the laser control of electron transport through a molecular wire that is attached to several electronic leads is investigated. These molecular vibrational modes induce an effective electron-electron interaction. In the regime where the wire electrons couple weakly to both the external leads and the vibrational modes, we derive within a Hartree-Fock approximation a nonlinear set of quantum kinetic equations. The quantum kinetic theory is then used to evaluate the laser driven, time-averaged electron current through the wire-leads contacts. This formalism is applied to two archetypical situations in the presence of electron-vibrational effects, namely, (i) the generation of a ratchet or pump current in a symmetrical molecule by a harmonic mixing field and (ii) the laser switching of the current through the molecule.  相似文献   

2.
A previously developed theory for the temperature-dependent resonance Raman scattering is used to study the surface-enhanced Raman scattering. Two models, the displaced oscillator model and the displaced-distorted oscillator model, based on the harmonic potential energy surfaces are carried out to calculate the surface-enhanced Raman scattering excitation profiles of the pyridine molecule adsorbed on a silver electrode, for which the density functional theory method is applied to evaluate the potential energy surfaces of the adsorption structure. In this framework, the distortion effect on the surface-enhanced Raman scattering will be discussed by comparing both models. The overlapping resonance of multiexcited electronic transitions is also studied, in which the interference between electronic transitions has been taken into account. It will be used to study the abnormal band at 1005.6 cm(-1) with the exciting radiation 457.9 nm.  相似文献   

3.
Understanding and modeling the interaction between light and matter is essential to the theory of optical molecular control. While the effect of the electric field on a molecule's electronic structure is often not included in control theory, it can be modeled in an optimal control algorithm by a set or toolkit of potential energy surfaces indexed by discrete values of the electric field strength where the surfaces are generated by Born-Oppenheimer electronic structure calculations that directly include the electric field. Using a new optimal control algorithm with a trigonometric mapping to limit the maximum field strength explicitly, we apply the surface-toolkit method to control the hydrogen fluoride molecule. Potential energy surfaces in the presence and absence of the electric field are created with two-electron reduced-density-matrix techniques. The population dynamics show that adjusting for changes in the electronic structure of the molecule beyond the static dipole approximation can be significant for designing a field that drives a realistic quantum system to its target observable.  相似文献   

4.
PuN和PuN_2基态分子的结构与势能函数   总被引:7,自引:2,他引:7  
李权  王红艳  朱正和 《化学学报》2003,61(12):1930-1933
用相对论有效原子实势和密度泛函理论方法对PuN和PuN_2分子的结构进行优化 ,得到了其平衡几何构型和谐振频率。采用最小二乘法拟合出PuN基态分子的 Murrell-Sorbie解析势能函数,在此基础上推导出光谱数据和力常数,并用多体展 式理论导出PuN_2基态分子的解析势能函数,正确地反映了其平衡构型特性。  相似文献   

5.
An appealing way to model electron correlation within the single determinant wave function formalism is through the expectation value of a linear two-electron operator. For practical reasons, it is desirable for such an operator to be universal, i.e., not depend on the positions and types of nuclei in a molecule. We show how a perturbation theory applied to a hookium atom provides for a particular form of a correlation operator, hence called the harmonic correlation operator. The correlation operator approach is compared and contrasted to the traditional ways to describe electron correlation. To investigate the two-electron approximation of this operator, we apply it to many-electron hookium systems. To investigate the harmonic approximation, we apply it to the small atomic systems. Directions of future research are also discussed.  相似文献   

6.
Naturally occurring metal surfaces possess planes of mirror symmetry on the nanometer-length scale. This mirror symmetry can be lifted and chirality "physically" conveyed onto a surface by adsorbing a chiral molecule. Until now, it has not been known whether the conveying of chirality is limited to just the physical structure or whether it goes deeper and permeates the electronic structure of the underlying surface. By using optically active second harmonic generation (OA-SHG), it is demonstrated that the adsorption of some, but not all, chiral molecules can reversibly, and without significant structural rearrangement, measurably lift the mirror symmetry of the surface electronic structure of a metal. It is proposed that the ability of a chiral molecule to place a significant "chiral perturbation" on the electronic structure of a surface is correlated to its adsorption geometry. The microscopic origins of the observed optical activity are also discussed in terms of classical models of chirality. The results of the study challenge current models of how chiral adsorbates induce enantioselectivity in the chemical/physical behavior of heterogeneous systems, which are based on geometric/stereochemical arguments, by suggesting that chiral electronic perturbations could play a role.  相似文献   

7.
A mixed quantum-classical approach is introduced which allows the dynamical response of molecules driven far from equilibrium to be modeled. This method is applied to the interaction of molecules with intense, short-duration laser pulses. The electronic response of the molecule is described using time-dependent density functional theory (TDDFT) and the resulting Kohn-Sham equations are solved numerically using finite difference techniques in conjunction with local and global adaptations of an underlying grid in curvilinear coordinates. Using this approach, simulations can be carried out for a wide range of molecules and both all-electron and pseudopotential calculations are possible. The approach is applied to the study of high harmonic generation in N(2) and benzene using linearly polarized laser pulses and, to the best of our knowledge, the results for benzene represent the first TDDFT calculations of high harmonic generation in benzene using linearly polarized laser pulses. For N(2) an enhancement of the cut-off harmonics is observed whenever the laser polarization is aligned perpendicular to the molecular axis. This enhancement is attributed to the symmetry properties of the Kohn-Sham orbital that responds predominantly to the pulse. In benzene we predict that a suppression in the cut-off harmonics occurs whenever the laser polarization is aligned parallel to the molecular plane. We attribute this suppression to the symmetry-induced response of the highest-occupied molecular orbital.  相似文献   

8.
Using the crown ether 18-crown-6 as a test system, molecular dynamics has been evaluated as a technique for conformational searching and thermodynamic ensemble generation. By running a series of 200 ps and 2 ns simulations, an “optimum” temperature range for conformational searching, i.e., the temperature at which one finds the largest number of low energy structures, was demonstrated to be dependent on the time interval at which one examines the structure. By considering conformational degeneracy and entropy with the rigid rotor harmonic oscillator approximation we have been able to demonstrate that the ensemble generated approaches thermodynamic equilibrium in about 6 ns of simulation. To our knowledge this is the first time this has been demonstrated for a complex organic molecule and it highlights the power and usefulness of molecular dynamics as a method for thermodynamic ensemble generation and conformational searching.  相似文献   

9.
Adaptive laser pulse shaping has proven to be expeditious for discovering laser pulse shapes capable of manipulating complex systems. However, if adaptive control is to be a valuable interrogative technique that informs physical and chemical research, methods that make it possible to infer mechanistic information from experimental results must be developed. Here, we demonstrate multivariate statistical analysis to extract a single control variable from results of a 137-parameter adaptive laser pulse-shaping optimization of multiphoton electronic excitation in a ruthenium(II) coordination complex in solution. We show that this single variable can be used to linearly manipulate the observed fitness, which is determined by the ratio of molecular emission to second harmonic generation of the laser pulse, over the range explored during the adaptive optimization. Further, manipulation of this variable reveals the latent control mechanism. For this system, that mechanism entails focusing the second harmonic power spectrum of the laser field in a spectral region where the probability of two-photon absorption by the molecule is also large. The statistical tools developed are general and will help elucidate control mechanisms in future adaptive pulse-shaping experiments.  相似文献   

10.
A golden-rule expression for the rate constant for unimolecular dissociation of a polyatomic molecule via a non-adiabatic process is expressed, in the harmonic oscillator approximation, in terms of a diatomic-like predissociation rate constant (kdiat), which contains all the electronic part of the dynamics of the process, and in terms of a product of (3N - 7) Frank—Condon factors. The influence of a difference in the equilibrium geometries of the initial and final electronic states is pointed out. A suitably averaged rate constant is defined, and it is shown that the shortcomings of the separable hamonic oscillator model can be usefully corrected by appropriate rate constant averaging, which allows for the effect of anharmonicity as well as for the non-separability and possibly poor choice of normal coordinates. The theory presented is suitable for calculating rate constants in cases where information regarding enery partitioning among fragments is not required.  相似文献   

11.
The dynamics of Jahn–Teller systems has recently been discussed in terms of generalized electronic charge and current densities in nuclear-coordinate space. The introduction of the electronic phase as a function of both electronic and nuclear coordinates, in addition to the electronic density, was a crucial component of this formulation. Here, a densitybased treatment of Born couplings is derived from first-principles quantum mechanics beyond the Born–Oppenheimer approximation. Because of the degenerate electronic configuration of a Jahn–Teller molecule, there are an infinite number of ways in which the charge distribution can be oriented for the same energy, leading to a vanishing bond hardness for the molecule in the symmetric nuclear configuration. Further, the moving nuclear framework serves as the perturbation necessary to define the orientation of the charge density, leading to unhindered rotation of the charge cloud. This leads to the dynamical Jahn–Teller problem, namely, the coupling of electronic and nuclear motions through the Born coupling terms. Applications to superconductivity theory are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Purely vibrational energy levels and partition functions are calculated using three different potential energy surfaces for the H2O molecule. Results obtained with perturbation-theory, independent-normal-mode (INM), and harmonic approximations are compared with accurate values. For the cases considered here, the expected improvement that perturbation theory provides over the corresponding harmonic treatment is found to be substantial, while the INM approximation leads to results which are worse than the corresponding harmonic ones. In fact, we show that reliable partition functions for these potential surfaces can be obtained when resonance contributions are removed from the perturbation-theory treatment, and we propose a theoretical criterion for deciding when a particular interaction should be treated as resonant.  相似文献   

13.
Nonperturbative electronic dynamics using the time-dependent Hartree-Fock (TDHF) and time-dependent Kohn-Sham (TDKS) theories with the adiabatic approximation is a powerful tool in obtaining insights into the interaction between a many-electron system and an external electromagnetic field. In practical applications of TDHF/TDKS using a truncated basis set, the electronic dynamics and molecular properties become gauge-dependent. Numerical simulations are carried out in the length gauge and velocity gauge to verify the extent of gauge-dependence using incomplete basis sets. Electronic dynamics of two many-electron systems, a helium atom and a carbon monoxide molecule in high-intensity linearly polarized radiation fields are performed using the TDHF and TDKS with two selected adiabatic exchange-correlation (xc) functionals. The time evolution of the expectation values of the dipole moment and harmonic spectra are calculated in the two gauges, and the basis set dependence on the gauge-invariance of these properties is investigated.  相似文献   

14.
Rate constants of radiationless electronic transitions in a diatomic molecule in a crystal at non-zero temperature are calculated. The electronic terms of the molecule are simulated by the Morse potential. The crystal vibrations are assumed to be harmonic. The calculations are done under the assumption that perturbation theory is applicable to the operator inducing the electronic transitions. The vibrational interaction of the molecule with the medium is not supposed to be small. The results explain certain experimental data on the radiationless electronic transitions in aromatic hydrocarbons.  相似文献   

15.
A valence-type anion of the canonical tautomer of uracil has been characterized using explicitly correlated second-order Moller-Plesset perturbation theory (RI-MP2-R12) in conjunction with conventional coupled-cluster theory with single, double, and perturbative triple excitations. At this level of electron-correlation treatment and after inclusion of a zero-point vibrational energy correction, determined in the harmonic approximation at the RI-MP2 level of theory, the valence anion is adiabatically stable with respect to the neutral molecule by 40 meV. The anion is characterized by a vertical detachment energy of 0.60 eV. To obtain accurate estimates of the vertical and adiabatic electron binding energies, a scheme was applied in which electronic energy contributions from various levels of theory were added, each of them extrapolated to the corresponding basis-set limit. The MP2 basis-set limits were also evaluated using an explicitly correlated approach, and the results of these calculations are in agreement with the extrapolated values. A remarkable feature of the valence anionic state is that the adiabatic electron binding energy is positive but smaller than the adiabatic electron binding energy of the dipole-bound state.  相似文献   

16.
17.
It is a highly desirable but difficult task to predict the molecular fluorescence quantum efficiency from first principles. The molecule in the excited state can undergo spontaneous radiation, conversion of electronic energy to nuclear motion, or chemical reaction. For relatively large molecules, it is impossible to obtain the full potential energy surfaces for the ground state and the excited states to study the excited-state dynamics. We show that, under harmonic approximation by considering the Duschinsky rotation effect, the molecular fluorescence properties can be quantitatively calculated from first principles coupled with our correlation function formalism for the internal conversion. In particular, we have explained the peculiar fluorescence behaviors of two isomeric compounds, cis,cis-1,2,3,4-tetraphenyl-1,3-butadiene and 1,1,4,4-tetraphenyl-butadiene, the former being nonemissive in solution and strongly emissive in aggregation or at low temperature, and the latter being strongly emissive in solution. The roles of low-frequency phenyl ring twist motions and their Duschinsky mode mixings are found to be crucial, especially to reveal the temperature dependence. As an independent check, we take a look at the well-established photophysics of 1,4-diphenylbutadiene for its three different conformers. Both the calculated radiative and nonradiative rates are in excellent agreement with the available experimental measurements.  相似文献   

18.
The solvent effects on the nonlinear optical properties of para-nitroaniline (pNA) molecule are studied on the base of time dependent density functional theory. The polarized continuum model is used to simulate the influence of the solvent environment of the solute molecule. In the first place, the geometrical structures of pNA molecule in each solvent are optimized by use of density functional theory and the influence of solvent on the geometry of pNA molecule is thus illustrated. Then, the energies and dipole moments of the excited states with pNA molecule in different solvents are computed on the base of time dependent density functional theory. The dispersion relations of the first-order nonlinear hyperpolarizabilities in second harmonic generation process for pNA molecule in different solvents are given by using two-state model for the first time. It is shown that polar solvents have much influence on the nonlinear optical properties. At low frequency radiation field, the theoretical results of the dispersion relation agree well with the experimental results. While at higher frequency radiation field, other methods need to be developed to compute the dispersion relation of the first order nonlinear hyperpolarizability. At last, possible explanations are given for the results and the validity of the two-state model is discussed.  相似文献   

19.
A time-dependent quasirelativistic density-functional theory for excitation energies of systems containing heavy elements is developed, which is based on the zeroth-order regular approximation (ZORA) for the relativistic Hamiltonian and a noncollinear form for the adiabatic exchange-correlation kernel. To avoid the gauge dependence of the ZORA Hamiltonian a model atomic potential, instead of the full molecular potential, is used to construct the ZORA kinetic operator in ground-state calculations. As such, the ZORA kinetic operator no longer responds to changes in the density in response calculations. In addition, it is shown that, for closed-shell ground states, time-reversal symmetry can be employed to simplify the eigenvalue equation into an approximate form that is similar to that of time-dependent nonrelativistic density-functional theory. This is achieved by invoking an independent-particle approximation for the induced density matrix. The resulting theory is applied to investigate the global potential-energy curves of low-lying LambdaS- and omega omega-coupled electronic states of the AuH molecule. The derived spectroscopic parameters, including the adiabatic and vertical excitation energies, equilibrium bond lengths, harmonic and anharmonic vibrational constants, fundamental frequencies, and dissociation energies, are in good agreement with those of time-dependent four-component relativistic density-functional theory and ab initio multireference second-order perturbation theory. Nonetheless, this two-component relativistic version of time-dependent density-functional theory is only moderately advantageous over the four-component one as far as computational efforts are concerned.  相似文献   

20.
In the frame of the Born-Oppenheimer approximation, nuclear motions in crystals can be simulated rather accurately using a harmonic model. In turn, the electronic first-order density matrix (DM) can be expressed as the statistically weighted average over all its determinations each resulting from an instantaneous nuclear configuration. This model has been implemented in a computational scheme which adopts an ab initio one-electron (Hartree-Fock or Kohn-Sham) Hamiltonian in the CRYSTAL program. After selecting a supercell of reasonable size and solving the corresponding vibrational problem in the harmonic approximation, a Metropolis algorithm is adopted for generating a sample of nuclear configurations which reflects their probability distribution at a given temperature. For each configuration in the sample the "instantaneous" DM is calculated, and its contribution to the observables of interest is extracted. Translational and point symmetry of the crystal as reflected in its average DM are fully exploited. The influence of zero-point and thermal motion of nuclei on such important first-order observables as x-ray structure factors and Compton profiles can thus be estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号