首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies heat equation with variable exponent u t = Δu + up(x) + u q in ? N × (0, T), where p(x) is a nonnegative continuous, bounded function, 0 < p? = inf p(x) ≤ p(x) ≤ sup p(x) = p+. It is easy to understand for the problem that all nontrivial nonnegative solutions must be global if and only if max {p+, q} ≤ 1. Based on the interaction between the two sources with fixed and variable exponents in the model, some Fujita type conditions are determined that that all nontrivial nonnegative solutions blow up in finite time if 0 < q ≤ 1 with p+ > 1, or 1 < q < 1 + \(\frac{2}{N}\). In addition, if q > 1 + \(\frac{2}{N}\), then (i) all solutions blow up in finite time with 0 < p?p+ ≤ 1 + \(\frac{2}{N}\); (ii) there are both global and nonglobal solutions for p? > 1 + \(\frac{2}{N}\); and (iii) there are functions p(x) such that all solutions blow up in finite time, and also functions p(x) such that the problem possesses global solutions when p? < 1 + \(\frac{2}{N}\) < p+.  相似文献   

2.
We study the blow-up and/or global existence of the following p-Laplacian evolution equation with variable source power
$${s_j} = {\beta _j} + \overline {{\beta _{n - j}}}p$$
where Ω is either a bounded domain or the whole space ? N , q(x) is a positive and continuous function defined in Ω with 0 < q ? = inf q(x) ? q(x) ? sup q(x) = q+ < ∞. It is demonstrated that the equation with variable source power has much richer dynamics with interesting phenomena which depends on the interplay of q(x) and the structure of spatial domain Ω, compared with the case of constant source power. For the case that Ω is a bounded domain, the exponent p ? 1 plays a crucial role. If q+ > p ? 1, there exist blow-up solutions, while if q + < p ? 1, all the solutions are global. If q ? > p ? 1, there exist global solutions, while for given q ? < p ? 1 < q +, there exist some function q(x) and Ω such that all nontrivial solutions will blow up, which is called the Fujita phenomenon. For the case Ω = ? N , the Fujita phenomenon occurs if 1 < q ? ? q + ? p ? 1 + p/N, while if q ? > p ? 1 + p/N, there exist global solutions.
  相似文献   

3.
This paper is devoted to a study of L~q-tracing of the fractional temperature field u(t, x)—the weak solution of the fractional heat equation(?_t +(-?_x)~α)u(t, x) = g(t, x) in L~p(R_+~(1+n)) subject to the initial temperature u(0, x) = f(x) in L~p(R~n).  相似文献   

4.
The paper can be understood as a completion of the q-Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear q-difference equations. The q-Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice \({q^{{{\Bbb N}_0}}}: = \left\{ {{q^k}:k \in {{\Bbb N}_0}} \right\}\) with q > 1. In addition to recalling the existing concepts of q-regular variation and q-rapid variation we introduce q-regularly bounded functions and prove many related properties. The q-Karamata theory is then applied to describe (in an exhaustive way) the asymptotic behavior as t → ∞ of solutions to the q-difference equation D q 2 y(t) + p(t)y(qt) = 0, where \(p:q^{\mathbb{N}_0 } \to \mathbb{R}\). We also present the existing and some new criteria of Kneser type which are related to our subject. A comparison of our results with their continuous counterparts is made. It reveals interesting differences between the continuous case and the q-case and validates the fact that q-calculus is a natural setting for the Karamata like theory and provides a powerful tool in qualitative theory of dynamic equations.  相似文献   

5.
We prove the monotonicity of nonnegative bounded solutions of the Dirichlet problem for the quasilinear elliptic equation ?Δpu = f(u), p ≥ 3, in a half-space. This assertion implies new results on the nonexistence of solutions for the case in which f(u) = uq with appropriate values of q.  相似文献   

6.
The equation ?2u/?t?x + up?u/?x = uq describing a nonstationary process in semiconductors, with parameters p and q that are a nonnegative integer and a positive integer, respectively, and satisfy p + q ≥ 2, is considered in the half-plane (x, t) ∈ ? × (0,∞). All in all, fourteen families of its exact solutions are constructed for various parameter values, and qualitative properties of these solutions are noted. One of these families is defined for all parameter values indicated above.  相似文献   

7.
Let R t [θ] be the ring generated over R by cosθ and sinθ, and R t (θ) be its quotient field. In this paper we study the ways in which an element p of R t [θ] can be decomposed into a composition of functions of the form p = R ? q, where R ∈ R(x) and q ∈ R t (θ). In particular, we describe all possible solutions of the functional equation R 1 ? q 1 = R 2 ? q 2, where R 1,R 2R[x] and q 1, q 2 ∈ R t [θ].  相似文献   

8.
The following system considered in this paper:
$$x' = -\,e(t)x + f(t)\phi_{p^*}(y), \qquad y'= -\,(p-1)g(t)\phi_p(x) - (p-1)h(t)y,$$
where \({p > 1, p^* > 1 (1/p + 1/p^* = 1)}\) and \({\phi_q(z) = |z|^{q-2}z}\) for q = p or q = p *. This system is referred to as a half-linear system. The coefficient f(t) is assumed to be bounded, but the coefficients e(t), g(t) and h(t) are not necessarily bounded. Sufficient conditions are obtained for global asymptotic stability of the zero solution. Our results can be applied to not only the case that the signs of f(t) and g(t) change like the periodic function but also the case that f(t) and g(t) irregularly have zeros. Some suitable examples are included to illustrate our results.
  相似文献   

9.
This paper is concerned with the oscillatory behavior of the damped half-linear oscillator (a(t)?p(x′))′ + b(t)?p(x′) + c(t)?p(x) = 0, where ?p(x) = |x|p?1 sgn x for x ∈ ? and p > 1. A sufficient condition is established for oscillation of all nontrivial solutions of the damped half-linear oscillator under the integral averaging conditions. The main result can be given by using a generalized Young’s inequality and the Riccati type technique. Some examples are included to illustrate the result. Especially, an example which asserts that all nontrivial solutions are oscillatory if and only if p ≠ 2 is presented.  相似文献   

10.
We study a projection-difference method for approximately solving the Cauchy problem u′(t) + A(t)u(t) + K(t)u(t) = h(t), u(0) = 0 for a linear differential-operator equation in a Hilbert space, where A(t) is a self-adjoint operator and K(t) is an operator subordinate to A(t). Time discretization is based on a three-level difference scheme, and space discretization is carried out by the Galerkin method. Under certain smoothness conditions on the function h(t), we obtain estimates for the convergence rate of the approximate solutions to the exact solution.  相似文献   

11.
Positive entire solutions of the equation \(\Delta _p u = u^{ - q} in \mathbb{R}^N (N \geqslant 2)\) where 1 < pN, q > 0, are classified via their Morse indices. It is seen that there is a critical power q = q c such that this equation has no positive radial entire solution that has finite Morse index when q > q c but it admits a family of stable positive radial entire solutions when 0 < qq c. Proof of the stability of positive radial entire solutions of the equation when 1 < p < 2 and 0 < qq c relies on Caffarelli–Kohn–Nirenberg’s inequality. Similar Liouville type result still holds for general positive entire solutions when 2 < pN and q > q c. The case of 1 < p < 2 is still open. Our main results imply that the structure of positive entire solutions of the equation is similar to that of the equation with p = 2 obtained previously. Some new ideas are introduced to overcome the technical difficulties arising from the p-Laplace operator.  相似文献   

12.
We show that viscosity solutions to the normalized p(x)-Laplace equation coincide with distributional weak solutions to the strong p(x)-Laplace equation when p is Lipschitz and \(\inf p>1\). This yields \(\smash {C^{1,\alpha }}\) regularity for the viscosity solutions of the normalized p(x)-Laplace equation. As an additional application, we prove a Radó-type removability theorem.  相似文献   

13.
This paper considers the delay dependent priority queueing discipline with P non-preemptive priority classes. The priority at time t of a customer from the pth priority class, who arrives at time Tp, is given by qp(t) = a p + b p (t - T p ). The result has been derived for the expected waiting time of a customer from the pth priority class.  相似文献   

14.
It is proved that, if G is a finite group that has the same set of element orders as the simple group D p (q), where p is prime, p ≥ 5 and q ∈ {2, 3, 5}, then the commutator group of G/F(G) is isomorphic to D p (q), the subgroup F(G) is equal to 1 for q = 5 and to O q (G) for q ∈ {2, 3}, F(G) ≤ G′, and |G/G′| ≤ 2.  相似文献   

15.
We consider a random process in a spatial-temporal homogeneous Gaussian field V (q , t) with the mean E V = 0 and the correlation function W(|q ? q′|, |t ? t′|) ≡ E[V (q, t)V (q′, t′)], where \( \bold{q} \in {\mathbb{R}^d} \), \( t \in {\mathbb{R}^{+} } \), and d is the dimension of the Euclidean space \( {\mathbb{R}^d} \). For a “density” G(r, t) of the familiar model of a physical system averaged over all realizations of the random field V, we establish an integral equation that has the form of the Dyson equation. The invariance of the equation under the continuous renormalization group allows using the renormalization group method to find an asymptotic expression for G(r, t) as r → ∞ and t → ∞.  相似文献   

16.
We investigate the non-homogeneous modular Dirichlet problem Δ p (·)u(x) = f (x) (where Δ p (·)u(x) = div(|?u|p(x-2)?u(x)) from the functional analytic point of view and we prove the stability of the solutions \({\left( {{u_{{p_i}}}} \right)_i}\) of the equation \({\Delta _{{p_i}\left( \cdot \right)}}{u_{{p_i}\left( \cdot \right)}} = f\) as p i (·) → q(·) via Gamma-convergence of sequence of appropriate functionals.  相似文献   

17.
We consider Hamiltonian systems on (T*?2, dqdp) defined by a Hamiltonian function H of the “classical” form H = p 2/2 + V(q). A reasonable decay assumption V(q) → 0, ‖q‖ → ∞, allows one to compare a given distribution of initial conditions at t = ?∞ with their final distribution at t = +∞. To describe this Knauf introduced a topological invariant deg(E), which, for a nontrapping energy E > 0, is given by the degree of the scattering map. For rotationally symmetric potentials V(q) = W(‖q‖), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf’s degree deg(E) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(E), which appears when the nontrapping energy E goes from low to high values.  相似文献   

18.
For the system of root functions of an operator defined by the differential operation ?u″ + p(x)u′ + q(x)u, xG = (0, 1), with complex-valued singular coefficients, sufficient conditions for the Bessel property in the space L2(G) are obtained and a theorem on the unconditional basis property is proved. It is assumed that the functions p(x) and q(x) locally belong to the spaces L2 and W2?1, respectively, and may have singularities at the endpoints of G such that q(x) = qR(x) +qS(x) and the functions qS(x), p(x), q 2 S (x)w(x), p2(x)w(x), and qR(x)w(x) are integrable on the whole interval G, where w(x) = x(1 ? x).  相似文献   

19.
We prove that the mixed problem for the Klein–Gordon–Fock equation u tt (x, t) ? u xx (x, t) + au(x, t) = 0, where a ≥ 0, in the rectangle Q T = [0 ≤ x ≤ l] × [0 ≤ tT] with zero initial conditions and with the boundary conditions u(0, t) = μ(t) ∈ L p [0, T ], u(l, t) = 0, has a unique generalized solution u(x, t) in the class L p (Q T ) for p ≥ 1. We construct the solution in explicit analytic form.  相似文献   

20.
We denote by Gn the group of the upper unitriangular matrices over Fq, the finite field with q = pt elements, and r(Gn) the number of conjugacy classes of Gn. In this paper, we obtain the value of r(Gn) modulo (q2 -1)(q -1). We prove the following equalities  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号