首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three regioisomeric 3,4-methylenedioxyphenethylamines having the same molecular weight and major mass spectral fragments of equivalent mass have been reported as components of clandestine drug samples in recent years. These drugs of abuse are 3,4-methylenedioxy-N-ethylamphetamine, 3,4-methylenedioxy-N,N-dimethylamphetamine, and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine. These three compounds are a subset of a total of ten regioisomeric 3,4-methylenedioxyphenethylamines of molecular weight 207, yielding regioisomeric fragment ions of equivalent mass (m/z 72 and 135/136) in the electron impact mass spectrum. The specific identification of one of these compounds in a forensic drug sample depends upon the analyst's ability to eliminate the other regioisomers as possible interfering or coeluting substances. This paper reports the synthesis, mass spectral characterization, and chromatographic analysis of these ten unique regioisomers. The ten regioisomeric methylenedioxyphenethylamines are synthesized from commercially available precursor chemicals. The electron impact mass spectra of these regioisomers show some variation in the relative intensity of the major ions with only one or two minor ions that might be considered side-chain specific fragments. Thus, the ultimate identification of any one of these amines with the elimination of the other nine regioisomeric substances depends heavily upon chromatographic methods. Chromatographic separation of these ten uniquely regioisomeric amines is studied using gas chromatographic temperature program optimization.  相似文献   

2.
The popular drug of abuse 3,4-methylenedioxymethamphetamine (MDMA) is one of a total of 10 regioisomeric 2,3- and 3,4-methylenedioxyphenethylamines of MW 193 that yields regioisomeric fragment ions with equivalent mass (m/z 58 and 135/136) in the electron-impact (EI) mass spectrum. Thus, these 10 methylenedioxyphenethylamines are uniquely isomeric; they have the same molecular weight and equivalent major fragments in their mass spectra. The specific identification of one of these compounds (i.e., Ecstasy or 3,4-MDMA) in a forensic drug sample depends upon the analyst's ability to eliminate the other regioisomers as possible interfering or coeluting substances. This study reports the synthesis, chemical properties, spectral characterization, and chromatographic analysis of these 10 unique regioisomers. The ten 2,3- and 3,4-regioisomers of MDMA are synthesized from commercially available precursor chemicals. In the EI mass spectra, the side-chain regioisomers show some variation in the relative intensity of the major ions, with the exception of only one or two minor ions that might be considered side-chain specific fragments. The position of substitution for the methylenedioxy ring is not easily determined by mass spectral techniques, and the ultimate identification of any one of these amines with the elimination of the other nine must depend heavily upon chromatographic methods. The chromatographic separation of these 10 uniquely regioisomeric amines are studied using reversed-phase liquid chromatographic methods with gradient elution and gas chromatographic techniques with temperature program optimization.  相似文献   

3.
After an accidental, deliberate, or weather-related dispersion of chemicals (dispersive event), rapid determination of elemental compositions of ions in mass spectra is essential for tentatively identifying compounds. A direct analysis in real time (DART)ion source interfaced to a JEOL AccuTOFmass spectrometer provided exact masses accurate to within 2 mDa for most ions in full scan mass spectra and relative isotopic abundances (RIAs) accurate to within 15-20% for abundant isotopic ions. To speed determination of the correct composition for precursor ions and most product ions and neutral losses, a three-part software suite was developed. Starting with text files of m/z ratios and their ion abundances from mass spectra acquired at low, moderate, and high collision energies, the ion extraction program (IEP) compiled lists for the most abundant monoisotopic ions of their exact masses and the RIAs of the +1 and +2 isotopic peaks when abundance thresholds were met; precursor ions; and higher-mass, precursor-related species. The ion correlation program (ICP) determined if a precursor ion composition could yield a product ion and corresponding neutral loss compositions for each product ion in turn. The input and output program (IOP) provided the ICP with each precursor ion:product ion pair for multiple sets of error limits and prepared correlation lists for single or multiple precursor ions. The software determined the correct precursor ion compositions for 21 individual standards and for three- and seven-component mixtures. Partial deconvolution of composite mass spectra was achieved based on exact masses and RIAs, rather than on chromatography.  相似文献   

4.
This paper reports the development of a technique for identifying and confirming chlorinated fatty acids previously detected in fish by gas chromatography (GC) with halogen-specific detection (XSD). Fatty acid methyl esters (FAMEs) including chlorinated FAMEs within fractions of reversed-phase high-performance liquid chromatography of transesterified fish extracts were derivatized to pentafluorobenzyl esters, which were subjected to GC/mass spectrometry (MS) with negative ion chemical ionization (NICI). Pentafluorobenzyl esters displayed reasonably good GC characteristics, a very high ionization efficiency and a low degree of fragmentation. Chloride ion chromatograms extracted at m/z 35 and 37 from full scans were utilized for locating traces of chlorinated unknowns in the GC elution profile so that their mass spectra could be readily displayed. Significant ions displayed in the mass spectrum scanned in a narrow range of retention time where a chlorinated unknown was located were evaluated using ion chromatograms extracted at the m/z of these ions. The chromatographic peaks of those ions derived from the analyte were expected to center at that specific retention time, whereas those originating from matrix compounds were not. The isotopic patterns of chlorinated ions were also examined against their theoretical relative abundances. Using this approach, three metabolism-related dichloro fatty acids previously identified by GC/XSD in filet extracts of white sucker sampled downstream from a bleached kraft pulp mill were confirmed: dichlorooctadecanoic, dichlorohexadecanoic and dichlorotetradecanoic acids. In addition, an isomer of dichlorotetradecanoic acid was found in a reference fish sample. As sample preparation is critical in this application, improved conditions for hydrolysis and pentafluorobenzyl esterification are also discussed.  相似文献   

5.
This paper reports a liquid chromatographic/electrospray ionization mass spectrometric (LC/ESI-MS) method for profiling a wide range of structurally different sulfoconjugated compounds in urine and its application to the characterization of biomarkers for heavy metal toxicity in rat urine. Sulfoconjugates were first isolated by solid-phase extraction and the LC separation was performed on a reversed-phase column. Sulfoconjugates were detected in a triple-quadrupole mass spectrometer by simultaneously monitoring constant losses of 80 u (or 80 Th for doubly charged ions), precursors of m/z 80 (SO(3) (-*)) and precursors of m/z 97 (HSO4-). The ESI-MS detection conditions were optimized on dehydroepiandrosterone sulfate and estradiol sulfate and tested on other sulfoconjugates. The analysis of urine samples from humans and rats by using the developed method allowed the detection of about 15 peaks in each mode of detection. It was then applied to the investigation of heavy metal toxicity in rats. Comparative analysis of the chromatographic fingerprints of urine from control and uranium- and cadmium-treated rats showed several variations in the chromatographic pattern of the sulfoconjugates. Diagnostic m/z ratios were confirmed by analyzing individual urine samples and one of the observed variations seemed to be specific to uranium toxicity. The ion responsible for this variation has been identified as 4-ethylphenol sulfate by comparison of its chromatographic retention time and collision-induced dissociation mass spectra (MS(2) and MS(3) performed on a quadrupole ion trap instrument) with those of the synthesized compound.  相似文献   

6.
A new fast and efficient method combining liquid chromatography coupled to ionspray mass spectrometry in tandem mode with negative ion detection is described for the qualitative analysis of artichoke waste. Forty-five phenolic compounds were identified on the basis of their mass spectra in full scan mode, mass spectra in different MS-MS modes, and retention times compared with those of available reference substances. The major compounds were found to be both caffeoylquinic and dicaffeoylquinic acids, luteolin glucuronide, luteolin galactoside, quercetin, and some quercetin glycosides.  相似文献   

7.
Although liquid chromatography with mass spectrometry in full scan mode can obtain all the signals simultaneously in a large range and low cost, it is rarely used in quantitative analysis due to several problems such as chromatographic drifts and peak overlap. In this paper, we propose a Tchebichef moment method for the simultaneous quantitative analysis of three active compounds in Qingrejiedu oral liquid based on three‐dimensional spectra in full scan mode of liquid chromatography with mass spectrometry. After the Tchebichef moments were calculated directly from the spectra, the quantitative linear models for three active compounds were established by stepwise regression. All the correlation coefficients were more than 0.9978. The limits of detection and limits of quantitation were less than 0.11 and 0.49 μg/mL, respectively. The intra‐ and interday precisions were less than 6.54 and 9.47%, while the recovery ranged from 102.56 to 112.15%. Owing to the advantages of multi‐resolution and inherent invariance properties, Tchebichef moments could provide favorable results even in the situation of peaks shifting and overlapping, unknown interferences and noise signals, so it could be applied to the analysis of three‐dimensional spectra in full scan mode of liquid chromatography with mass spectrometry.  相似文献   

8.
新型抗炎镇痛剂SFZ-47及其代谢物的电喷雾离子阱质谱研究   总被引:7,自引:0,他引:7  
用电喷雾离子阱质谱对警犬尿样中SFZ-47[3H-1,2-二氢-2-(4-甲基苯胺基)甲基-1-吡咯里嗪酮)及其4种代谢物进行了结构鉴定,利用质谱解析软件分析其裂解方式发现,它们在(+)ESI-MS^2或( )ESI-MS^3质谱中分别生成m/z122和脱吡咯里嗪酮母核的碎片,并发现葡萄苷酸型代谢物易于生成脱水(18u)和脱葡萄醛酸(176u)的碎片离子,这些特征可用于SFZ-47及结构类似物的体内生物转化研究。  相似文献   

9.
A series of isobaric and isomeric molecules related to 3,4methylenedioxymethamphetamine (3,4-MDMA) are prepared and evaluated as potential mass spectral equivalents to this controlled substance. These compounds have the potential to produce a mass spectrum equivalent to 3,4-MDMA, thus making mass spectrometry a nonconclusive method for confirming the identity of any one of the substances. The various isomeric forms of the methoxymethylphenethylamines and the methoxymethcathinones have mass spectra essentially equivalent to 3,4-MDMA, but the ethoxy substituted phenethylamines show a unique fragment at m/z 107. Gas chromatographic separation on nonpolar stationary phases successfully resolved these compounds from 3,4-MDMA, however only a limited set of side chain regioisomers and ring substitution patterns are evaluated in this initial study.  相似文献   

10.
This work reports the use of reverse-phase liquid chromatography coupled to electrospray ion trap (QIT) mass spectrometry for the analysis of the metabolome in rat urine. An injection of 20 microL of urine into the chromatographic system is followed by a slow gradient elution and mass spectrometric detection in the scanning mode from m/z 100-1000 in both positive and negative modes. Over a time scale of 90 min, 30 and 20 resolved peaks were observed in the positive and the negative modes, respectively, corresponding to the presence of a few hundred m/z ratios. By using a QIT analyzer, data-dependent tandem mass spectrometry of selected m/z ratios identified several compounds in rat urine and characterized various chemical families, including carboxylic acids, amines, sulfated compounds, glucuronides and glycosides, by the observation of characteristic fragment ions or neutral losses. The method has been applied to the investigation of the chronic toxicity of heavy metals in rat urine. A few tens of m/z ratios, differing in intensity more than threefold from control values, were observed in both positive and negative modes. The time variations for some selected ions suggest that LC/ESI-MS could allow selective characterization of biomarkers in response to specific toxic compounds.  相似文献   

11.
The five side-chain regioisomers of 4-methoxy-3-methylphenethylamine constitute a unique set of compounds having an isobaric relationship with the controlled drug substance 3,4-methylenedioxymethamphetamine (3,4-MDMA or Ecstasy). These isomeric forms of the 4-methoxy-3-methylphenethylamines have mass spectra essentially equivalent to 3,4-MDMA, and all have a molecular weight of 193 and major fragment ions in their electron ionization mass spectra at m/z 58 and 135/136. Mass spectral differentiation of 2,3- and 3,4-MDMA from primary and secondary amine regioisomeric side chains of 4-methoxy-3-methylphenethylamines was possible after formation of the perfluoroacyl derivatives, pentafluoropropionamides and heptafluorobutyrylamides. The mass spectra for these derivatives are significantly individualized, and the resulting unique fragment ions allow for specific side-chain identification. The individualization is the result of fragmentation of the alkyl carbon-nitrogen bond, which yielded unique hydrocarbon fragments. The heptafluorobutyrylamide derivatives offer more fragment ions for molecular individualization among these regioisomeric substances. Gas chromatographic separation on relatively non-polar stationary phases successfully resolves these derivatives.  相似文献   

12.
A new method based on ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry ((Q-ToF)-MS) was developed for the analysis of 32 biologically active compounds including anti-inflammatories, analgesics, lipid regulators, psychiatric drugs, anti-ulcer agents, antibiotics, beta-blockers and phytoestrogens. This new method allows chromatographic analysis in 14 min, with instrumental detection limits from 2 to 84 pg, and limits of quantification ranging from 0.1 to 15 ng/L in tap water, and from 2 to 300 ng/L in wastewater. The potential of liquid chromatography with triple quadrupole mass spectrometry (LC/QqQ-MS) was compared with that of UPLC/(Q-ToF)-MS for the analysis of biologically active compounds in water samples. LC/Q-ToF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of ToF instruments diminishes the problem of isobaric interferences and helps the analysis of trace compounds in complex samples. In this work UPLC/Q-ToF chromatograms were recorded containing full scan spectral data. The m/z values of analytes were extracted from the total ion chromatogram (TIC) and the accurate masses of the compounds were obtained. In addition, to increase the selectivity of ToF measurements a narrow accurate mass interval (20 m m/z units mass window) was used to reconstruct the chromatographic traces. However, regarding quantitative performance in terms of dynamic range and limits of detection (LODs), typical LODs achieved by QqQ instruments operating in multiple-reaction monitoring (MRM) mode ranged from 1 to 50 ng/L in wastewater, and the linear response for QqQ instruments generally covers three orders of magnitude. This is an important advantage over ToF instruments and one of the reasons why QqQ instruments are widely used in quantitative environmental analysis.  相似文献   

13.
Lu J  Wang X  Xu Y  Dong Y  Yang S  Wu Y  Qin Y  Wu M 《The Analyst》2011,136(3):467-472
The metabolism and excretion of toremifene were investigated in one healthy male volunteer after a single oral administration of 120 mg toremifene citrate. Different liquid chromatographic/tandem mass spectrometric (LC/MS/MS) scanning techniques were carried out for the characterization of the metabolites in human urine for doping control purposes. The potential characteristic fragmentation pathways of toremifene and its major metabolites were presented. An approach for the metabolism study of toremifene and its analogs by liquid chromatography-tandem mass spectrometry was established. Five different LC/MS/MS scanning methods based on precursor ion scan (precursor ion scan of m/z 72.2, 58.2, 44.2, 45.2, 88.2 relative to five metabolic pathways) in positive ion mode were assessed to recognize the metabolites. Based on product ion scan and precursor ion scan techniques, the metabolites were proposed to be identified as 4-hydroxy-toremifene (m/z 422.4), 4'-hydroxy-toremifene (m/z 422.4), α-hydroxy-toremifene (m/z 422.4), 3,4-dihydroxy-toremifene (m/z 404.2), toremifene acid (m/z 402.2), 3-hydroxy-4-methoxy-toremifene (m/z 456.2), dihydroxy-dehydro-toremifene (m/z 440.2), 3,4-dihydroxy-toremifene (m/z 438.2), N-demethyl-4-hydroxy-toremifene (m/z 408.3), N-demethyl-3-hydroxy-4-methoxy-toremifene (m/z 438.3). In addition, a new metabolite with a protonated molecule at m/z 390.3 was detected in all urine samples. The compound was identified by LC/MS/MS as N-demethyl-4,4'-dihydroxy-tamoxifene. The results indicated that 3,4-dihydroxy-toremifene (m/z 404.2), toremifene acid (m/z 402.2) and N-demethyl-4,4'-dihydroxy-tamoxifene (m/z 390.3) were major metabolites in human urine.  相似文献   

14.
An analytical procedure based on alkaline hydrolysis and silylation followed by GC/MS analysis was employed to study the formation of characteristic acidic compounds and the development of a distinctive chromatographic pattern in the course of accelerated ageing tests on Brassicaceae seed oil. On the basis of mass spectra of trimethylsilyl derivatives, the main degradation products were identified as alpha,omega-dicarboxylic, omega-hydroxycarboxylic and dihydroxycarboxylic acids, including 11,12-dihydroxyeicosanoic acid and 13,14-dihydroxydocosanoic acid. The mass spectra of both these compounds are characterised by fragment ions arising from the alpha cleavage of the bond between the two vicinal trimethylsiloxy groups, resulting in fragments at m/z 215 and 345 for 11,12-dihydroxyeicosanoic acid, and at m/z 215 and 373 for 13,14-dihydroxydocosanoic acid. Other significant fragment ion-radicals from rearrangement process at m/z [M - 90](+*), [M - 142](+*), 204 as well as fragment ions at m/z [M - 15](+), [M - 105](+), 217 are present in the mass spectra of both the compounds. The results obtained for reference materials were compared with those relating to archaeological organic materials recovered in Egyptian pottery lamps. The occurrence of the same characteristic degradation products found in the reference materials subjected to accelerated ageing indicates an unambiguous origin for the organic archaeological remains and represents the chemical evidence for the use of oil from seeds of Brassicaceae as illuminant.  相似文献   

15.
Because of the lack of a UV chromophore and their much smaller abundances in comparison with the major component, the minor components in erythromycin estolate preparations are difficult to analyze by high performance liquid chromatography ultraviolet (HPLC-UV). Tentative assignment of the major and minor components can be achieved with the combination of full scan and ZoomScan using an ion trap mass spectrometer. Tandem mass spectrometry (MS/MS) provided an effective method to quickly identify most components without chromatographic separation, and all the related compounds, except the isobaric pair ECE and PdMeEA, could be identified in this way. The best result was obtained by using liquid chromatography/tandem mass spectrometry (LC/MS/MS) operated in selected reaction monitoring mode. The major compound, the estolate of erythromycin A (EAE), and seven other minor components, could be separated and identified, with semiquantitative estimates of relative concentrations.  相似文献   

16.
A novel approach for the measurement of (37)Cl, (81)Br and (34)S in organic compounds containing chlorine, bromine, and sulphur is presented to overcome some of the major drawbacks of existing methods. Contemporary methods either require reference materials with the exact molecular compositions of the substances to be tested, or necessitate several laborious offline procedures prior to isotope analysis. In our online setup, organic compounds are separated by gas chromatography (GC) coupled to a high-temperature reactor. Using hydrogen as a makeup gas, the reactor achieves quantitative conversion of chlorinated, brominated and sulphurated organic compounds into gaseous hydrogen chloride (HCl), hydrogen bromide (HBr), and hydrogen sulphide (H(2)S), respectively. In this study, the GC interface was coupled to a quadrupole mass spectrometer operated in single-ion mode. The ion traces of either H(35)Cl (m/z 36) and H(37)Cl (m/z 38), H(79)Br (m/z 80) and H(81)Br (m/z 82), or H(2)(32)S (m/z 34) and H(2)(34)S (m/z 36), were recorded to determine the isotopic ratios of chlorine, bromine, and sulphur isotopes. The conversion interface presented here provides a basis for a novel method for compound-specific isotope analysis of halogenated and sulphur-containing compounds. Rapid online measurements of organic chlorine-, bromine- and sulphur-containing mixtures will facilitate the isotopic analysis of compounds containing these elements, and broaden their usage in fields of environmental forensics employing isotopic concepts.  相似文献   

17.
Mass spectral differentiation of 3,4-methylenedioxymethamphetamine (3,4-MDMA), a controlled drug, and its 2,3-regioisomer from the ring substituted ethoxyphenethylamines is possible after formation of the perfluoroacyl derivatives, pentafluoropropionamides (PFPA), and heptafluorobutyrylamides (HFBA). The ring substituted ethoxyphenethylamines constitute a unique set of compounds having an isobaric relationship with 3,4-MDMA. These isomeric forms of the 2-, 3-, and 4-ethoxy phenethylamines have mass spectra essentially equivalent to 3,4-MDMA; all have molecular weight of 193 and major fragment ions in their electron ionization mass spectra at m/z 58 and 135/136. All the side chain regioisomers of 2-ethoxy phenethylamine having equivalent mass spectra to 3,4-MDMA are synthesized and compared via gas chromatography-mass spectrometry to 2,3- and 3,4-methylenedioxymethamphetamine. The mass spectra for the perfluoroacyl derivatives of the primary and secondary amine regioisomers are significantly individualized, and the side chain regioisomers yield unique hydrocarbon fragment ions at m/z 148, 162, and 176. Additionally, the substituted ethoxymethamphetamines are distinguished from the methylenedioxymethamphet-amines via the presence of the m/z 107 ion. Gas chromatographic separation on relatively non-polar stationary phases successfully resolves these derivatives.  相似文献   

18.
A liquid chromatographic/tandem mass spectrometric method is described for the determination of phencyclidine (PCP) in small volumes of rat serum (e.g. 50 microl). Samples were extracted using a mixed-mode strong cation-exchange column and then separated isocratically using a narrow-bore (2.1 mm i.d.) 3 microm Hypersil phenyl column and a mobile phase consisting of an ammonium formate buffer (pH 2.7) with 60% (v/v) methanol. Detection was accomplished using positive ion electrospray ionization in the multiple reaction monitoring mode. Mass spectra were obtained and peaks were observed at an m/z (% abundance) of 244 (100), 159 (25), and 86 (89). Tandem mass spectra were also obtained from the m/z 244 precursor ion with peaks observed at m/z 159 (100), 86 (96), and 91 (11). Optimum serum PCP sensitivity and precision were obtained at a transition of m/z 244 --> 159. Matrix-associated ion suppression did not significantly affect the accuracy (100-112%) or precision (CV < or =8%) of the assay. The lower limit of quantitation was 1 ng ml(-1) in 50 microl of serum. The method was used to study the serum pharmacokinetics of PCP in rats after an intravenous bolus dose of PCP.  相似文献   

19.
Combining source collision-induced dissociation (CID) and tandem mass spectral acquisition in a pseudo-MS(3) experiment using a linear ion trap results in a highly selective and sensitive approach to identifying glycopeptide elution from a protein digest. The increased sensitivity is partially attributed to the nonselective nature of source CID, which allows simultaneous activation of all charge states and coeluting glycoforms generating greater ion abundance for the mass-to-charge (m/z) 204 and/or 366 oxonium ions. Unlike source CID alone, a pseudo-MS(3) approach adds selectivity while improving sensitivity by eliminating chemical noise during the tandem mass spectral acquisition of the oxonium ions in the linear ion trap. Performing the experiments in the hybrid linear ion trap/Fourier transform-ion cyclotron resonance (FT-ICR) enables subsequent high-resolution/high-mass accuracy full-scan mass spectra (MS) and parallel acquisition of MS/MS in the linear ion trap to be completed in 2 s directly following the pseudo-MS(3) scan to collate identification and characterization of glycopeptides in one experimental scan cycle. Analysis of bovine fetuin digest using the combined pseudo-MS(3), high-resolution MS, and data-dependent MS/MS events resulted in identification of four N-linked and two O-linked glycopeptides without enzymatic cleavage of the sugar moiety or release of the sialic acids before analysis. In addition, over 95% of the total protein sequence was identified in one analytical run.  相似文献   

20.
Quantitation of chromatographically coeluting compounds with partially overlapping mass profiles is a challenging task, especially if only a low-resolution mass spectrometer is available. To examine whether theoretical predictions can be utilized to determine the appropriate concentration ranges of the coeluting compounds that satisfy the non-interfering condition, we utilized an algorithm based upon a two-component model to compare the experimentally measured and predicted quantitation errors. Selected unlabeled and 13C-labeled polychlorinated biphenyl (PCB) congeners were investigated as model compounds. Standard solutions containing various concentration ratios of the unlabeled and 13C-labeled PCB congeners were analyzed, and the data were used to compare with theoretical predictions derived from the chlorine isotopic distributions (35Cl and 37Cl). Good agreements between experimental predictions and theoretical predictions were found on the magnitude of interferences for quantitation of 13C-labeled PCB congeners, as well as on the variability of the quantitation errors with the concentration ratio of 13C-labeled and unlabeled PCB counterparts. In addition, the magnitude of interferences considered in the present study was highly dependent upon the number of coexisting ions included for quantitation and their relative abundances in the mass spectrum. All these results suggest that the magnitude of interferences in quantifying a pair of coeluting compounds with partially overlapping mass spectral profiles can be effectively determined and minimized by carefully selecting the concentration ratio of the coeluting compounds and/or the number of quantitation ions. Finally, the selection of the experimental parameters to satisfy the non-interfering condition can be made purely on the basis of theoretical considerations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号