首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Monoglycerides (MG) are emulsifiers widely used in food and pharmaceutical industries. Current industrial processes for MG production consist of the interesterification of triglycerides with glycerol (GL), in the presence of inorganic catalysts at high temperatures (>200 degrees C). This reaction is known as glycerolysis and produces a mixture of approx 50% of MG. This level of concentration is suitable for many applications, although, for some specific uses like margarine, shortening, icing, and cream filling, require distilled MGs, which are purified MG (min. 90%) obtained by the molecular distillation process. Therefore, in this work, a 2(3) factorial design was employed to evaluate the effects of reaction parameters in the MG content after the interesterification reaction of refined soybean oil with GL in the presence of sodium hydroxide as catalyst. After that, the MG content in the reaction product was enhanced through the molecular distillation process in order to obtain distilled MG.  相似文献   

2.
Distilled glycerides are obtained through distillation of the system mono-diglycerides which is produced from the esterification reaction between a triglyceride with glycerol. In this work, monoglycerides (MG) and diglycerides (DG) are produced through lipase-catalyzed glycerolysis of soybean oil using Candida antarctica B in a solvent-free system. To separate the products of the reaction in order to obtain essentially MG and an oil of DG, it is necessary to use a suitable process in order to preserve the stability of the components and to keep the products free of inappropriate solvents. So, after 24 h of enzymatic reaction, the mixture of acylglycerols and fatty acids was distilled into a centrifugal molecular distiller, since it provides a free solvent and lower temperature environment to increase the desired product concentration. Starting from a material with 25.06% of triglycerides (TG), 46.63% of DG, 21.72% of MG, 5.38% of free fatty acids (FFA), and 1.21% of glycerol, the MG purity in the distillate stream was 80% at evaporator temperature (T E) equal to 250 °C and feed flow rate (Q) equal to 10.0 mL/min. At these conditions, the MG recovery was 35%. The material collected in the residue stream presented DG-enriched oil with TG unhydrolyzed, residual MG, and low acidity (29.83% of TG, 53.20% of DG, 15.64% of MG, and 1.33% of FFA), which is suitable to replace TG oil in the human diet.  相似文献   

3.
Two kinds of polypropylene capillary membranes were used in the membrane distillation (MD). These membranes exhibited a similar morphology, but one of them has an additional low porosity layer on the internal surface of capillaries. The changes of membrane performance during MD process of tap water were investigated. The presence of low porosity layer (thickness below 1 μm) caused that the air permeability was reduced from 1.365 to 0.863 dm3/m2 s kPa, whereas the MD permeate flux was decreased only by 15%. A significantly larger decline of the flux was caused by CaCO3 deposit formed during distillation of tap water. This deposit was removed every 30–70 h by rinsing the modules with a 2–5 wt.% HCl. Unfortunately, a repetition of this operation several times resulted in a gradual decline of the maximum permeate flux (distilled water as a feed). However, the module efficiency with the membranes covered by a surface layer of low porosity was found to decreases twice as slowly. The investigations revealed that a low surface porosity does not limit the possibility of surface wetting of polypropylene membranes, but hindered the scale formation inside the pores.  相似文献   

4.
This paper reports the development of a new approach for total phenol distillation using a focussed microwave oven, aiming its determination in petroleum refinery effluents and sour waters. In the procedure, 25 ml of sample is distilled during 15 min at 210 W power. At these conditions, recoveries as high as 95% are obtained, making possible the determination of total phenol in the samples without any interference and in a time significantly lower than that required by the reference method. In the course of the research, the influence of the distilled volume was investigated and a Doehlert matrix was employed for the multivariate optimization of the irradiation power and time. Quantification of phenol was spectrophotometrically performed in a FIA system, exploring classical reaction of phenol with 4-amineantipyrine and ferricyanide. Aqueous standards solutions of phenol could be directly injected in the FIA system for calibration purposes, making the procedure very simple and low time-consuming. A detection limit of 10 μg l−1 was achieved as well as a quantification limit of 33 μg l−1, becoming the procedure very suitable to be applied in the control of total phenols in effluents from petroleum industry.  相似文献   

5.
Four commercial Saudi Arabian crude oils were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). These crude oils, Arab Berri (AB), Arab Light (AL), Arab Medium (AM) and Arab Heavy (AH), were also subjected to the traditionally employed true boiling point (TBP) distillation and simulated distillation (SIMDIST). The TG/DTA data show that the hydrocarbons present in these crude oils fall into four groups: the volatiles, the low molecular weight, the medium molecular weight and the high molecular weight compounds. These four types of hydrocarbons were observed to display certain trends, such that the volatile and low molecular weight hydrocarbons increased, while the medium and high molecular weight hydrocarbons decreased with the lightness of the crude. The volatile contents of AB, AL, AM and AH crude oils up to 280°C were 50.1, 42.2, 42.3 and 38.5 mass percent, respectively. This confirms that AB is the lightest of these crude oils with maximum volatile content. The mass percentage loss from the TG results is in good agreement with the percentage distilled from TBP (ASTM D 2892) and SIMDIST. During evaporation, the TG mass loss follows a similar trend to those of the TBP and SIMDIST results and thus behaves like distillation. During the oxidative degradation, the TG curve shows a higher mass loss as compared to the distillation data. The higher deviation of the TG mass loss and percentage distilled at the higher-temperature end of the curve may be attributed to the higher content of asphaltenes and carbonaceous material present in AH as compared to the AB crude oil. At around 200°C, the TG mass loss curve intersects the TBP and SIMDIST curves and shows a derivation from distillation behaviour. This intersection temperature of the TG and distillation curves is observed to decrease with the heaviness of the crude and can be an indication of the onset of thermal degradation of hydrocarbons present in the crude oil. On the whole, the TG data closely resemble the distillation results.  相似文献   

6.
生物油酸酮类模化物与乙醇在HZSM-5上共裂化制备生物汽油   总被引:1,自引:0,他引:1  
生物油酸类和酮类化合物具有较高的裂化活性,而使用分子蒸馏技术能将这些组分富集到蒸出馏分中,因此蒸出馏分相比原始生物油具有更好的裂化特性.为了模拟实际蒸出馏分的组成,本文将生物油模化物(羟基丙酮(HPO)、环戊酮和乙酸)进行配比混合,在固定床反应器上对其与乙醇的共裂化行为进行了研究,考察了不同反应温度和压力对混合反应物的转化率、粗汽油相的选择性和组成的影响.研究发现,当反应温度在340℃时,乙酸和乙醇的转化率分别仅为67.9%和74.4%,同时得到的油相产物中烃类含量仅为59.8%,并含有大量的含氧副产物.常压裂化同样生成了低品质的油相产物,同时油相选择性仅为10.8%.提高反应温度能促进反应物的转化,提高裂化过程中的脱氧效率,而提高反应压力对液体烃类的生成有明显的促进作用.在400℃和2MPa时,酸类和酮类都有良好的裂化表现,反应物接近完全转化,粗汽油相选择性达到31.5%,且全部由烃类组成,其中芳香烃含量高达91.5%.此外,反应后催化剂表征和稳定性测试结果表明,催化剂在较长时间反应后会失活,但通过催化剂再生能够很好地恢复催化剂活性.  相似文献   

7.
Microwave energy has been novelty applied to speed up a tetramethylammonium hydroxide (TMAH) alkaline digestion of seaweed samples and to assist distillation of iodine from seaweed alkaline digests. Iodide in the alkaline digests from seaweed and distilled iodine, reduced back to iodine in a hydroxylamine hydrochloride solution, was determined by a catalytic spectrophotometric method based on the catalytic effect of iodide on the oxidation of As(III) by Ce(IV) in H2SO4/HCl medium (Sandell-Kolthoff reaction). The determination of iodide was directly performed in the alkaline digests, while total iodine was assessed by analyzing the hydroxylamine hydrochloride solution after the distillation process. Microwave-assisted alkaline digestion was performed using 7.5 mL of TMAH and irradiating samples at 670 W for two 5.5 min steps. Microwave-assisted distillation was carried out using 4.0 mL of the alkaline digest and 3 mL of a 2.2 M hydrochloric acid and 0.05% (m/v) sodium nitrite solution, with a microwave power at 670 W for two 90 s steps. The distillate (iodine vapor) was bubbled in 10 mL of a 500 μg mL−1 hydroxylamine hydrochloride solution (accepting solution). The linear calibration ranges were 0.30-20.0 and 0.40-20.0 μg L−1 for iodide determination and total iodine determination, respectively. The limit of detection was 9.2 μg g−1 for iodide and 28.5 μg g−1 for total iodine. Repeatability of the overall procedures, expressed as R.S.D. for 11 determinations, was 2.6% for 196.3 μg g−1 of iodide measured after microwave-assisted alkaline digestion, and 5.8% for 954.3 μg g−1 of total iodine by microwave-assisted alkaline digestion followed by microwave-assisted distillation. Finally, accuracy of the methods was assessed by analyzing the NIST-09 (Sargasso) certified reference material and the methods were applied to the determination of iodide and total iodine in different Atlantic edible seaweed samples with satisfactory results.  相似文献   

8.
不同蒸馏压力下的生物油分子蒸馏分离特性研究   总被引:1,自引:0,他引:1  
采用分子蒸馏分离技术对热敏性生物油在不同蒸馏压力下的分离特性进行了研究。经过分子蒸馏分离后,生物油被分离为蒸出馏分油与残留馏分油,蒸出馏分油的得率随着压力的下降而显著增大,在700 Pa时达到了56.50%(质量分数)。在馏分油的物理性质方面,蒸出馏分油富集了生物油内的大部分水分,残留馏分油内水分得到了较好的脱除,其中,700 Pa下残留馏分油的水分含量降至4.20%(质量分数)。结合生物油及馏分油的GC-MS分析结果,对乙酸、苯酚、糠醛以及左旋葡聚糖等生物油内典型化合物在不同蒸馏压力下的分布特性进行了研究,获得了相应化合物在分子蒸馏过程中的富集规律。结合分离因子评估模型对生物油内14种代表化合物的富集特性进行了量化评价。  相似文献   

9.
Osmotic distillation (OD) or osmotic evaporation (OE) is a promising membrane process generally applied to concentrate solutions under isothermal conditions. In this work, this process was applied to concentrate commercial noni juice (Morinda citrifolia). Several nutraceutical properties have been reported for noni-derived products, mainly associated to the phenolic content of the fruit.The analyzed system is an osmotic distillation system where the solutions are circulated through a hollow fiber membrane contactor operating in transient configuration with circulation rates between 0.1 and 1.0 L min−1 and concentrated solutions of CaCl2 were used as extraction brine. At isothermal conditions (30 °C), transmembrane vapor water flux was experimentally determined from 0.090 up to 0.413 kg h−1 m−2. Noni juice was concentrated from 8 to 32 °Brix after 60 min of treatment. The content of phenolic compounds was preserved after this processing.Simulation algorithms based on phenomenological equations of heat and mass transfer were developed considering a resistances-in-series model to predict the performance of the process from theoretical information. The values of transmembrane water flux obtained by simulations showed deviations between 2.35 and 16.19% with the experimental ones for the operating conditions applied in this work.  相似文献   

10.
In this study we improved the dansylacetamidooxyamine (DNSAOA)-LC-fluorescence method for the determination of aqueous-phase glyoxal (GL), methylglyoxal (MG) and hydroxyacetaldehyde (HA). As derivatization of dicarbonyls can potentially lead to complex mixtures, a thorough study of the reaction patterns of GL and MG with DNSAOA was carried out. Derivatization of GL and MG was shown to follow the kinetics of successive reactions, yielding predominantly doubly derivatized compounds. We verified that the bis-DNSAOA structure of these adducts exerted only minor influence on their fluorescence properties. Contrary to observations made with formaldehyde, derivatization of GL, MG and, to a lesser extent of HA, was shown to be faster in acidic (H(2)SO(4)) medium with a maximum of efficiency for acid concentrations of ca. 2.5 mM. Concomitant separation of GL, MG, HA and of single carbonyls was achieved within 20 min by using C(18) chromatography and a gradient of CH(3)CN in water. Detection limits of 0.27, 0.17 and 0.12 nM were determined for GL, MG and HA, respectively. Consequently, low sample volumes are sufficient and, unlike numerous published methods, neither preconcentration nor large injection volumes are necessary to monitor trace-level samples. The method shows relative measurement uncertainties better than ±15% at the 95% level of confidence and good dynamic ranges (R(2)>0.99) from 0.01 to 1.5 μM for all carbonyls. GL, MG and HA were identified for the first time in polar snow samples, but also in saline frost flowers for which unexpected levels of 0.1-0.6 μM were measured. Concentrations in the 0.02-2.3 μM range were also measured in cloud water. In most samples, a predominance of HA over GL and MG was observed.  相似文献   

11.
Metal wires are produced from different metals using drawing methods. The metal used influences both the technology applied and the composition of effluents generated during wires production. Ultrafiltration and nanofiltration are used for the separation of waste emulsions from cable factories. Membrane distillation was proposed for the treatment of acidic saline wastewater generated during steel wire manufacturing (etching). The possibility of the previously mentioned processes application for water reuse is presented. The application of poly(vinylidene fluoride) (PVDF) membranes (FP 100) with the molecular weight cut-off (MWCO) of 100 kDa in the ultrafiltration process resulted in the reduction of 99 % of oil and lubricants in the treated emulsions and allowed complete removal of suspended solids and colloidal substances. Such pre-treated emulsion was subsequently purified by nanofiltration (NF-90-2540) and a 98 % rejection of copper ions was achieved, resulting in a decrease of the permeate electrical conductivity from 3200 μS cm−1 to 260 μS cm−1. The obtained permeate was suitable for preparation of fresh oil emulsion utilized for lubrication in the wire drawing process. The spent etching baths (from steel wire production), which mainly contained FeSO4 and about 1 mass % of sulfuric acid, were separated by membrane distillation. The obtained permeates were: clean water with electrical conductivity at a level of 3–5 μS cm−1. Concentrates (190–200 g of Fe per L) from the MD process were cooled to 295 K, which enabled the FeSO4 crystallization. Application of the above-mentioned membrane processes allows producing high quality product water, over 90 % of water was recovered from the treated wastewaters. Presented at the 35th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 26–30 May 2008.  相似文献   

12.
Soybean oil deodorized distillate (SODD) is a byproduct from refining edible soybean oil; however, the deodorization process removes unsaponifiable materials, such as sterols and tocopherols. Tocopherols are highly added value materials. Molecular distillation has large potential to be used in order to concentrate tocopherols, because it uses very low levels of temperatures because of the high vacuum and short operating time for separation and, also, it does not use solvents. However, nowadays, the conventional way to recover tocopherols is carrying out chemical reactions prior to molecular distillation, making the process not so suitable to deal with natural products. The purpose of this work is to use only molecular distillation in order to recover tocopherols from SODD. Experiments were performed in the range of 140–220°C. The feed flow rate varied from 5 to 15 g/min. The objective of this study was to remove the maximum amount of free fatty acids (FFA) and, so, to increase the tocopherol concentration without add any extra component to the system. The percentage of FFA in the distillate stream of the molecular still is large at low feed flow rates and low evaporator temperatures, avoiding thermal decomposition effects.  相似文献   

13.
This work demonstrates the application of FT-NIR spectroscopy in order to monitor the enzymatic interesterification process for butterfat modification. The reactions were catalyzed by Lipozyme TL IM at 70 °C for the blend of butterfat/rapeseed oil (70/30, w/w) in a packed-bed reactor. The blend and interesterified fat samples were measured in liquid form at 70 °C by transmission mode-based FT-NIR over the spectral region 12000–4000 cm−1. The calibration of FT-NIR for conversion degree (evaluated by the triglyceride profile, which was represented by the triglyceride peak ratio) and solid fat content (SFC) of the interesterified products was carried out using partial least squares (PLS) regression. Good correlations were observed between the NIR spectra and ln (peak ratio), and between the NIR spectra and the SFC at 5 °C over the spectral range 5269–4513 cm−1. Overall, transmission-mode FT-NIR spectroscopy performed at 70 °C yielded conditions close to those used during the interesterification process, implying that this method could be used to control the enzymatic interesterification process online.  相似文献   

14.
A green and efficient strategy was established and optimized for target‐oriented extraction, enrichment and separation of cadinene sesquiterpenoids from Eupatorium adenophorum Spreng., using the combination of supercritical fluid extraction, molecular distillation, and industrial preparative chromatography for the first time. The extraction conditions of supercritical fluid extraction were initially optimized by orthogonal experimental design. Under the optimum conditions, the contents of 9‐oxo‐10,11‐dehydroageraphorone and 10‐9‐oxo‐ageraphorone, which were 55.00% and 6.01%, respectively, were much higher than conventional extraction methods. Then, the molecular distillation enrichment method was established and investigated by response surface methodology technology, which showed strong specificity for enriching target compounds and removing impurities from crude extracts. Under the optimum conditions of molecular distillation, total contents of cadinene sesquiterpenoids were increased to 89.19%. Finally, a total of 146 mg of 9‐oxo‐10,11‐dehydroageraphorone and 29 mg of 10‐9‐oxo‐ageraphorone were easily obtained by industrial preparative chromatography, from 200 mg of distillation fraction, with purities over 99%. The contents of target components were analyzed by HPLC, and structures of them were identified by high‐resolution MS, 1H‐NMR, and 13C‐NMR spectroscopy. These results indicate that it is a simple, effective, and eco‐friendly strategy, which is easily converted into industrial scale.  相似文献   

15.
New ferrocenyl‐based valproic acid (VPA) ester derivatives were designed and synthesized according to the reaction of appropriate haloalkylferrocene derivatives with VPA in the presence of K2CO3 and a catalytic amount of 18‐crown‐6 ether. Elemental analyses and Fourier transform infrared, 1H NMR, 13C NMR and mass spectra all well confirmed the predicted molecular structure. This is the first report in which ferrocene has been applied in derivatization of VPA as a chromogenic group. The electrochemical properties of the synthesized compounds were studied using cyclic voltammetry measurements, and energies of the frontier molecular orbitals were determined. In addition, the solubilities of the final compounds were studied in distilled water, phosphate buffer (pH = 7.4) and 0.9% (w/v) NaCl solution.  相似文献   

16.
Abstract

Total phenols were determined by molecular spectrophotometry, after distillation, complexation with 4-aminoantipyrine and extraction into chloroform. Cyanides were also determined spectrophotometrically after distillation from the acidified samples, and complexation in moderate acidic solution with barbituric acid. The dynamic ranges were 0 – 100 μg L?1 for total phenols and 0 – 30 μg L?1 for cyanides. The above methods were applied in the analysis of river, lake and stream waters collected from Northern Greece. The seasonal and spatial variation of concentrations was evaluated by two-way ANOVA. Background levels (4 – 12 μg L?1 for total phenols and 0.3 – 3 μg L?1 for cyanides), were found in almost all surface waters, with some exceptions.  相似文献   

17.
(The determination and separation of oxygen impurities in high-purity selenium)By distillation in high vacuum, high-purity selenium is almost completely freed from impurities caused by metallic elements, oxides and water. If bulk vitreous selenium has a suitable thermal history, the oxygen content may be determined from the intensity of the oxide absorption band at 932 cm?1 in the i.r. spectrum of the glass. In distilled selenium this content is < 1 × 10?4 wt.< %.  相似文献   

18.
A direct synthesis of methyl levulinate from cellulose alcoholysis in methanol medium under mild condition (180–210 °C) catalyzed by extremely low concentration sulfuric acid (≤0.01 mol/L) and the product isolation were developed in this study. Effects of different process variables towards the catalytic performance were performed as a function of reaction time. The results indicated that sulfuric acid concentration, temperature and initial cellulose concentration had significant effects on the synthesis of methyl levulinate. An optimized yield of around 50% was achieved at 210 °C for 120 min with sulfuric acid concentration of 0.01 mol/L and initial cellulose concentration below 100 g/L. The resulting product mixture was isolated by a distillation technique that combines an atmospheric distillation with a vacuum distillation where n-dodecane was added to help distill the heavy fraction. The light fraction including mainly methanol could be reused as the reaction medium without any substantial change in the yield of methyl levulinate. The chemical composition and structural of lower heavy fraction were characterized by GC/MS, FTIR, 1H-NMR and 13C-NMR techniques. Methyl levulinate was found to be a major ingredient of lower heavy fraction with the content over 96%. This pathway is efficient, environmentally benign and economical for the production of pure levulinate esters from cellulose.  相似文献   

19.
Iodine-131 was generated by irradiation of natural tellurium dioxide in a nuclear reactor. After irradiation the tellurium dioxide was transferred to hot cell and heated in a quartz furnace at ~700 °C. The Iodine-131 was distilled and collected in carbonate/bicarbonate buffer and used for thyroid cancer patients. The tellurium dioxide used was >99 % pure. During nuclear reaction nanogram tellurium was consumed to produce 131I, although significant loss of target material may occur in heating process. In dry distillation technique no chemical was added to irradiated target material. After 131I separation tellurium dioxide was decayed for 8 years in radioactive waste management facility. The decayed TeO2 was recovered, melted and crushed for desired mesh size. The TeO2 was sealed in Al capsule for re-irradiation purposes. The separation of 131I was carried out via dry distillation. The purity and yield of 131I separated from both of the irradiated new and irradiated re-used tellurium dioxide targets were comparable.  相似文献   

20.
Optimal synthesis of distillation sequence is a complex problem in chemical processes engineering, which involves process structure optimization and operation parameters optimization. The study of the synthesis of distillation sequence is a crucial step toward improving the efficiency of chemical processes and reducing greenhouse gas emissions. This work introduced the concept of binary tree to encode the distillation sequence. The performance of the six evolutionary algorithms was evaluated by solving a 14-component distillation sequence synthesis problem. The best algorithm was used to optimize the operation parameters of a triple-column distillation process. The total annual cost and CO2 emissions were considered as the metrics to evaluate the performance of triple-column distillation processes. As a result, NSGA-II-DE was found to be the best one of the six tested evolutionary algorithms. Then, NSGA-II-DE was applied to the distillation sequence optimization to find the best operating parameters, which led to a significant reduction in CO2 emission and total annual costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号