首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CoFe2−xGdxO4 (x=0-0.25) nanoparticles were synthesized via a simple hydrothermal process at 200 °C for 16 h without the assistance of surfactant. The as-synthesized powders were characterized by X-ray diffraction, transmission electron microscopy, and a vibrating sample magnetometer. The X-ray diffraction results showed that the as-synthesized powders were in the pure phase with a doping amount of ≤0.25, and the peaks could be readily indexed to the cubic spinel cobalt ferrite. Transmission electron microscopy and high resolution transmission electron microscopy observations revealed that the gadolinium-doped cobalt ferrite nanoparticles were single crystal, roughly spherical, uniformly distributed, and not highly agglomerated. The room temperature magnetic field versus magnetization measurements confirmed a strong influence of gadolinium doping on the saturation magnetization and coercivity due to large lattice distortion and grain growth of small particles.  相似文献   

2.
Aluminum substituted cobalt ferrite powders (CoFe2−xAlxO4) with varying composition from 0.0 to 1.0 in the step of 0.2 have been obtained by sol-gel auto combustion technique using citric acid as a fuel. The metal nitrate to fuel ratio was maintained 1:4 throughout the synthesis of CoFe2−xAlxO4. The thermal analysis of as prepared samples is done by TGA technique. The compositional stoichiometry of the prepared samples is confirmed by Energy dispersive X-ray analysis technique. Single phase cubic spinel structure and nano phase structure of the synthesized powders were confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallite size of 16-26 nm was obtained using Scherrer formula. SEM analysis shows the formation of uniform grain growth. The grain size obtained from SEM results is of the order of 30 nm. Maximum specific surface area was observed to be of the order of 52 m2/gm. The highest value of saturation magnetization and coercivity was observed for pure cobalt ferrite sample and it decreases as the aluminum content x increases. A strong co-relation between the saturation magnetization and aluminum content was observed. The decrease in magnetic properties is due to the substitution of aluminum ions in place of Fe3+.  相似文献   

3.
Magnetic nanocomposites consisting of cobalt ferrite nanoparticles embedded in silica matrix were prepared by the coprecipitation method using metallic chlorides as precursors for ferrite. Subsequently composites were annealed at 100, 200 and 300 °C for 2 h. The samples were structurally characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The magnetic properties were measured in the temperature range of 10-300 K using vibrating sample magnetometer (VSM). The effects of thermal treatment on structural and magnetic properties of nanocomposites were investigated. When the samples were annealed, CoFe2O4 nanocrystallites were observed in the SiO2 matrix, whose size increases with increase in annealing temperature. The coercivity and saturation magnetization of nanocomposite (annealed at 300 °C for 2 h) are much higher than that of bulk cobalt ferrite. The realization of adjustable particle sizes and controllable magnetic properties makes the applicability of the CoFe2O4 nanocomposite more versatile.  相似文献   

4.
SrFe12−x(Zr0.5Mg0.5)xO19 nanoparticles and thin films with x=0-2.5 were synthesized by a sol-gel method on thermally oxidized silicon wafer (Si/SiO2). Structural and magnetic characteristics of synthesized samples were studied employing x-rays diffraction (XRD), transmission electron microscopy (TEM), magnetic susceptometer, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and vibrating sample magnetometer (VSM). TEM micrographs display that the narrow size distribution of ferrite nanoparticles with average particle size of 50 nm were fabricated. Fitting obtained data of effective magnetic susceptibility by Vogel-Fulcher law confirms the existence of strong magnetic interaction among fine particles. XRD patterns and FE-SEM micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. AFM micrographs exhibited that the surface roughness increases with an increase in Zr-Mg content. It was found from the VSM graphs that with an increase in substitution contents the coercivity decreases, while the saturation of magnetization increases. The Henkle plots confirms the existence of exchange coupling among nano-grain in ferrite thin films.  相似文献   

5.
Single phase zinc ferrite (ZnFe2O4) nanoparticles have been prepared by the coprecipitation method without any subsequent calcination. The effects of precipitation temperature in the range 20–80 °C on the structural and the magnetic properties of zinc ferrite nanoparticles were investigated. The crystallite size, microstructure and magnetic properties of the prepared nanoparticles were studied using X-ray diffraction (XRD), Fourier transmission infrared spectrum, transmission electron microscope (TEM), energy dispersive X-ray spectrometer and vibrating sample magnetometer. The XRD results showed that the coprecipitated nanoparticles were single phase zinc ferrite with mixture of normal and inverse spinel structures. Furthermore, ZnFe2O4 nanoparticles have the crystallite size in the range 5–10 nm, as confirmed by TEM. The magnetic measurements exhibited that the zinc ferrite nanoparticles synthesized at 40 °C were superparamagnetic with the maximum magnetization of 7.3 emu/g at 10 kOe.  相似文献   

6.
Synthesis and characterization of Ni-Zn ferrite nanoparticles   总被引:1,自引:0,他引:1  
Nickel zinc ferrite nanoparticles NixZn1−xFe2O4 (x=0.1, 0.3, 0.5) have been synthesized by a chemical co-precipitation method. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, electron paramagnetic resonance, dc magnetization and ac susceptibility measurements. The X-ray diffraction patterns confirm the synthesis of single crystalline NixZn1−xFe2O4 nanoparticles. The lattice parameter decreases with increase in Ni content resulting in a reduction in lattice strain. Similarly crystallite size increases with the concentration of Ni. The magnetic measurements show the superparamagnetic nature of the samples for x=0.1 and 0.3 whereas for x=0.5 the material is ferromagnetic. The saturation magnetization is 23.95 emu/g and increases with increase in Ni content. The superparamagnetic nature of the samples is supported by the EPR and ac susceptibility measurement studies. The blocking temperature increases with Ni concentration. The increase in blocking temperature is explained by the redistribution of the cations on tetrahedral (A) and octahedral (B) sites.  相似文献   

7.
Manganese-magnesium ferrite nanoparticles Mn1−xMgxFe2O4; 0≤x≤0.25 were prepared by the co-precipitation route. The samples were characterized by X-ray diffraction (XRD), which confirms the single phase spinel structure. Crystallite size, calculated from the (3 1 1) peak using the Scherrer formula, was found to increase with increasing Mg2+ concentrations and was found to be within the range 3-6 nm. TEM was also used to characterize the microstructure of nanosized Mn1−xMgxFe2O4. Nominal composition of the samples was determined by Atomic Absorption analysis (AA). Hysteresis loops of manganese-magnesium ferrite were obtained at room temperature and revealed lower saturation magnetization values associated with nanocrystalline Mn1−xMgxFe2O4 particles. This behavior was attributed to structural distortion of surface spins compared to that of the bulk one.  相似文献   

8.
Ni0.6−xCuxZn0.4Fe2O4 (x=0-0.5) ferrite nanoparticles were prepared, employing a reverse micelle process. X-ray diffraction and transmission electron microscopy evaluations demonstrated that single phase spinel ferrites with narrow size distribution were obtained. Vibrating sample magnetometer was employed to probe the magnetic properties of the samples. It was found that with an increase in copper content, the saturation magnetization decreases. Magnetic dynamics of the samples was studied by measuring a.c. magnetic susceptibility versus temperature at different frequencies. The phenomenological Néel-Brown and Vogel-Fulcher models were employed to distinguish between the interacting or non-interacting systems. The system exhibits that there is strong interaction among fine particles.  相似文献   

9.
Mn1−xZnxFe2O4 nanoparticles (x=0-1) were synthesized by wet chemical co-precipitation techniques. X-ray diffraction, transmission electron microscopy and high-resolution transmission electron microscopy were effectively utilized to investigate the different structural parameters. The elemental analysis was conducted using energy-dispersive spectrum and inductively coupled plasma analysis. The magnetic properties such as magnetization and coercivity were measured using vibrating sample magnetometer. The observed magnetization values of the nanoparticles were found to be lower compared to the bulk counterpart. The magnetization showed a gradual decrease with zinc substitution except for a small increase from x=0.2 to 0.3. The Curie temperature was found to be enhanced in the case of ferrites in the nanoregime. The variation in lattice constant, reduced magnetization values, variation of magnetization with zinc substitution, the presence of a net magnetic moment for the zinc ferrite and the enhancement in Curie temperature in Mn1−xZnxFe2O4 all provide evidence to the existence of a metastable cation distribution together with possible surface effects at the nanoregime.  相似文献   

10.
In this study, Nanocrystalline Mn–Mg–Zn ferrite with the chemical formula MnxMg0.5−xZn0.5Fe2O4 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) was successfully synthesized by the glycine-nitrate autocombustion process using glycine as a fuel and nitrates as oxidants. The as-synthesized powders were characterized by the X-ray diffraction analysis, field emission scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer. The X-ray diffraction data was used to determine the lattice constant, cation distribution and the oxygen position parameter. The results reveal that the nanocrystalline Mn–Mg–Zn ferrite has an average crystallite size of 35–67 nm and particle size of 40 nm. The lattice parameter increases linearly with an increase in the Mn content. The FTIR analysis confirms the intrinsic vibrational frequencies of the tetrahedral and octahedral of the spinel structure. The magnetic measurements indicate that the coercivity decreases, and the magnetization increases by increasing the Mn content.  相似文献   

11.
Mn-Zn ferrite nanoparticles with various amounts of cobalt doping have been synthesized by the co-precipitation method. The structure and morphology of the nanoparticles have been characterized by X-ray diffraction and transmission electron microscopy. The effects of cobalt ions on the crystallization behavior, lattice parameters and magnetic properties of Mn-Zn ferrites have been investigated. All the Co-doped ferrite nanoparticles calcined at 1150 °C possess a simple spinel structure and have an approximately spherical shape. The lattice parameters increase almost linearly with increasing Co content. The studies of magnetic properties show that the saturation magnetization Ms strongly depends on the Co content, having a maximum Ms value of 73 emu/g at a Co content of 1.0 at%, and all the Co-doped ferrites, with the average crystallite sizes ranging from 24.5 to 27.0 nm, exhibit superparamagnetism at room temperature.  相似文献   

12.
Ultrafine crystals of chromium-substituted nickel ferrite were prepared by wet chemical co-precipitation method using sulphates of respective metal ions. Formation of these materials has been confirmed by X-ray powder diffraction method. The fine crystal nature of these materials is evidenced from scanning electron microscope (SEM). Cation distribution has been investigated using X-ray diffraction technique. Cation distribution indicates that chromium occupy octahedral site for all the values of composition x. The saturation magnetization and magneton number both are decreasing with increase of chromium concentration x. The decrease in saturation magnetization and magneton number is attributed to the substitution of the Cr3+ ions. Curie temperature (T C ) from susceptibility plot is found to decrease with Cr concentration x. Curie temperature of all the compositions are also obtained theoretically and it agrees with observed Curie temperature.  相似文献   

13.
Diluted magnetic semiconductor (DMS) nanoparticles of Sn1−x Er x O2 (x = 0.0, 0.02, 0.04, and 0.1) were prepared by sol–gel method. The X-ray diffraction patterns showed SnO2 rutile structure for all samples with no impurity peaks. The decrease in crystallite size with Er concentration was confirmed from TEM measurements (from 12 to 4 nm). The UV–Visible absorption spectra of Er-doped SnO2 nanoparticles showed blue shift in band gap compared to undoped SnO2. The electron spin resonance analysis of Er-doped SnO2 nanoparticles indicate Er3+ in a rutile lattice and also decrease in intensity with Er concentration above x = 0.02. Temperature-dependent magnetization studies and the inverse susceptibility curves indicated increased antiferromagnetic interaction with Er concentration.  相似文献   

14.
Buried layers of (Fe1 –x Co x )Si2 were prepared by sequent implantation of iron and cobalt into (100) silicon. The depth distributions of iron and cobalt and the atomic concentration ratio silicon/metal were determined by Auger Electron Spectroscopy (AES) and Rutherford Backscattering Spectrometry (RBS). The phase composition and the microstructure of the silicide layer were studied by X-ray diffraction and electron microscopy. The band gap energy was evaluated from Infrared (IR) reflection and transmission experiments. The semiconducting-FeSi2 structure remains stable up to a cobalt fraction ofx = 0.2 if the iron silicide is stabilized by an intermediate annealing between iron and cobalt implantation. With increasing cobalt content, the electrical resistivity as well as the energy of the direct band gap of the (Fe1 –x Co x )Si2 layer decrease. In this way, a band gap tuning between 0.84 and 0.70 eV is possible. The gap energy is found to vary quadratically with the Co content in the composition range 0 <x < 0.15.  相似文献   

15.
In this work zinc substituted cobalt ferrite nanoparticles (Co0.5Zn0.5Fe2O4) have been synthesized by the coprecipitation method, using stable ferric, zinc and cobalt salts with sodium hydroxide, at different solution temperatures, from room temperature to 363 K. The cobalt-zinc ferrite crystalline phase, the particle size and the morphology of the resulting nanoparticles were studied by X-ray diffraction and transmission electron microscopy. The average crystallite size of each sample was calculated from the broadening of the most intense peak (3 1 1), using Scherrer's formula and the results show crystallite sizes increased from 6 to 8 nm by increasing the solution temperature from room temperature to 363 K respectively. Room temperature VSM measurements show that the prepared nanoparticles have superparamagnetic behavior and did not saturate at maximum field of 800 kA/m. The variation of AC-susceptibility of the samples with respect to temperature was measured and it was found that the blocking temperature increased from 198 to 270 K by increasing the solution temperature from room temperature to 363 K respectively. FTIR spectra of the samples have been analyzed in the frequency range 400-4000 cm−1, which also confirms the results of XRD.  相似文献   

16.
Due to the magnetic anisotropy introduced by the Co2+ ion in octahedral sites of cubic spinel ferrites, it is possible to tailor the magnetic properties by changing the cobalt content. Magnetic fluids with magnetite-cobalt ferrite nanoparticles given by the formula Co(x)Fe(3−x)O4 with x=0, 0.2 and 0.4 were prepared. Kerosene and oleic acid were used as liquid carrier and surfactant, respectively. Spherical magnetic nanoparticles were obtained by coprecipitation from metal salts and ammonium hydroxide; afterwards the magnetic fluids were obtained by a peptization process. Powder properties were characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption isotherma (BET), vibrating sample magnetometry (VSM) and fluids by transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), VSM and the short-circuited transmission line technique.  相似文献   

17.
Nanocrystalline Co2xNi0.5−xZn0.5−xFe2O4 (x=0−0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.  相似文献   

18.
A magnetic composite of nitrogen-doped carbon nanotubes (CNx) decorated with nickel nanoparticles was synthesized by a chemical precipitation and deoxidization method. The decorated CNx were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The XRD pattern showed that CNx, nickel nanoparticles and little nickel oxides coexisted in the composite, TEM observation indicated that nickel nanoparticles were highly dispersed on the outer walls of CNx, Magnetic measurements by VSM demonstrated that the saturated magnetization and remanence of CNx were improved, while the coercivity was lowered after decorating with nickel nanoparticles.  相似文献   

19.
Ni–Zn ferrites have been widely used in components for high-frequency range applications due to their high electrical resistivity, mechanical strength and chemical stability. Ni–Zn ferrite nanopowders doped with samarium with a nominal composition of Ni0.5Zn0.5Fe2−xSmxO4 (x=0.0, 0.05, and 0.1 mol) were obtained by combustion synthesis using nitrates and urea as fuel. The morphological aspects of Ni–Zn–Sm ferrite nanopowders were investigated by X-ray diffraction, nitrogen adsorption by BET, sedimentation, scanning electron microscopy and magnetic properties. The results indicated that the Ni–Zn–Sm ferrite nanopowders were composed of soft agglomerates of nanoparticles with a high surface area (55.8–64.8 m2/g), smaller particles (18–20 nm) and nanocrystallite size particles. The addition of samarium resulted in a reduction of all the magnetic parameters evaluated, namely saturation magnetization (24–40 emu/g), remanent magnetization (2.2–3.5 emu/g) and coercive force (99.3–83.3 Oe).  相似文献   

20.
Nanoparticles of a series of arsenic–cobalt mixed valency spinel oxides of theoretical formula As x Co3?x O4, (x=0, 0.005, 0.01, 0.015, 0.024) have been successfully prepared by the rheological phase reaction and the pyrolysis method. The products were characterized by X-ray powder diffraction, scanning electron microscope, thermogravimetric analysis and simultaneous differential thermal analysis. Calcination of the precursor at 500 °C resulted in the formation of arsenic-doped cobalt oxide nanoparticles of 48 nm in crystal size. The effect of the calcination temperature on the crystal size of arsenic-doped Co3O4 was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号