首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The purpose of present study is to fabrication of a magmolecule (amino-functionalized magnetite nanoparticles) and evaluation of its adsorption capacity for selenite (SeO3 2?) ions from nuclear wastewater. To accomplish this, synthesized magnetite nanoparticles is coated with a layer of SiO2 in order to be chemically stable and then functionalized with 3-aminopropyl triethoxysilane (APTES) to be more effective. Adsorption of SeO3 2? ions was investigated in batch technique. The effect of parameters such as solution pH, presence of competing anions using sulfuric acid and nitric acid (NO3 ?, HSO4 ? and SO4 2?) and temperature were studied. Maximum adsorption occurred at pH 2.4 for magnetite (naked nanoparticle) and 1.7 for functionalized nanoparticles, while the dose of adsorbent was 1 g/L and selenite ion concentration was 50 mg/L. sulfuric acid was selected as the better acidic agent for controlling pH of solution. Thermodynamic parameters were also calculated and it has been found that the adsorption was endothermic. The obtained result showed that the naked particles had more adsorption capacity but it has been suggested usage of functionalized particles in the magmolecule process duo to stability and reusable capability.  相似文献   

2.
Anthracene bioconversion was achieved by immobilized enzyme technology. An oxidation yield of 0.7?mg/L of polycyclic aromatic hydrocarbons reached 60% following 24?h of incubation with laccase from Trametes versicolor covalently immobilized on glutaraldehyde-activated chitosan at the optimal pH of 5 in the presence of diammonium 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) as the radical mediator. High-performance liquid chromatography indicated that the main product of anthracene oxidation was 9,10-anthraquinone which is less toxic than its precursor. Highly porous 3?mm diameter chitosan macrobeads were synthesized by precipitation in alkaline solution. Support activation with glutaraldehyde was confirmed by elemental analysis, thermogravimetry, and infrared spectroscopy. The bioreactor system was characterized for kinetic parameters obtaining a Michaelis–Menten constant of 0.13?mM and a maximum rate of 0.0011?µmol/min/mg, thermal stability, and reuse. The protein and glutaraldehyde concentrations were optimized to enhance the efficiency of the bioreactor.  相似文献   

3.
Biosorption of uranyl ions from aqueous solution by Saccharomyces cerevisiae was studied in a batch system. The influence of contact time, initial pH, temperature and initial concentration was investigated. The optimal conditions were found to be 3.5?h of contact time and pH?=?4.5. Temperature had no significant effect on adsorption. The uptake of uranyl ions was relatively fast and 85?% of the sorption was completed within 10?min. The experimental data were well fitted with Langmuir isotherm model and pseudo-second order kinetic model. According to this kinetic model, the sorption capacity and the rate constant were 0.455?mmol UO2 2+/g dry biomass and 1.89?g?mmol?1?min?1, respectively. The Langmuir isotherm indicated high affinity and capacity of the adsorbent for uranyl biosorption with the maximum loading of 0.477?mmol UO2 2+/g dry weight.  相似文献   

4.
浮石负载壳聚糖吸附去除水中丙溴磷   总被引:1,自引:0,他引:1  
彭炳先  周爱红 《应用化学》2017,34(4):464-471
通过浮石负载壳聚糖制备了吸附剂壳聚糖/浮石复合物,采用扫描电子显微镜(SEM)、热重分析(TGA)、元素分析、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)和X射线荧光光谱(XRF)等技术手段表征了吸附剂性质,考察了吸附剂量、吸附时间、溶液pH值、离子强度和温度对该吸附剂吸附去除水中丙溴磷的影响,研究了再生吸附剂的吸附性能。结果表明,负载在浮石上的壳聚糖占吸附剂总量的8.69%;在p H值3.0~7.0内,壳聚糖/浮石对丙溴磷的吸附率大于90%;这种吸附剂对丙溴磷的吸附受溶液离子强度影响较小,随温度升高而稍微减小。在溶液温度25℃、pH=7.0、丙溴磷浓度40 mg/L、壳聚糖/浮石剂量为0.7 g/L和吸附平衡时间为90 min条件下,此吸附剂对丙溴磷最大吸附率为93.3%(最大吸附量为53.4 mg/g)。壳聚糖/浮石连续经过3次吸附/再生循环,每次循环对丙溴磷的吸附率下降约12%。可见壳聚糖/浮石通过吸附可有效地去除水中的农药丙溴磷。  相似文献   

5.
In this article, highly efficient magnetic chitosan nanoparticles were prepared by the glutaraldehyde cross-linking method and then chemically-modified with amino groups through reaction between triethylenetramine and glycidyl methacrylate. The adsorption kinetics and isotherms of these novel adsorbents fit the pseudo-second-order model and the Langmuir model. The maximum adsorption capacities were 293?mg/g at pH?=?4.3 and t?=?1.4 hours. The rate-limiting step was the chemical adsorption. Further recycling experiments showed that the adsorbent provided the potential regeneration and reuse after adsorbing Cu2+. All the experimental results demonstrated that the adsorbent had a potential application in Cu2+ removal from wastewater.  相似文献   

6.
Chitosan Schiff bases (CSBs) decorated with ammonium or pyridinium motifs for recyclable biosorption of Cu2+ ions from aqueous effluents were tailored by grafting of salicylaldehyde ionic liquids (Sal-ILs) onto chitosan surface. Biosorption capacity of poly(ionic-salicylidene) CSBs (PISCSB1,2) was compared with chitosan and poly(neural-salicylidene) CSBs (PSCSB). The ionic salicylidene-functionalized chitosan, poly(pyridinium)-salicylidene chitosan Schiff base (PISCSB2), exhibited excellent adsorption capacity (99.1%), in comparison to chitosan (85%) and PSCSB (95%). Biosorption of Cu2+ ions onto PSCSB followed pseudo-first-order kinetic model while onto chitosan (CS) and PISCSB1,2 followed pseudo-second-order kinetic model. However, Cu2+ ions biosorption onto all biosorbents fitted Langmuir adsorption isotherm model. Negative values of ΔGo and ΔHo confirmed the spontaneity and exothermic behavior of adsorption process. The new biosorbents could be successfully regenerated in aqueous 0.01 M EDTA solution with negligible loss in their adsorption capacity. Consequently, our new chitosan-based biosorbents may offer promising green and renewable scavengers for Cu2+ ions from wastewater.  相似文献   

7.
The ion-imprinted magnetic chitosan resins (IMCR) prepared using U(VI) as a template and glutaraldehyde as a cross-linker showed higher adsorption capacity and selectivity for the U(VI) ions compared with the non-imprinted magnetic chitosan resins (NIMCR) without a template. The results showed that the adsorption of U(VI) on the magnetic chitosan resins was affected by the initial pH value, the initial U(VI) concentration, as well as the temperature. Both kinetics and thermodynamic parameters of the adsorption process were estimated. These data indicated an exothermic spontaneous adsorption process that kinetically followed the second-order adsorption process. Equilibrium experiments were fitted in Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherm models to show very good fits with the Langmuir isotherm equation for the monolayer adsorption process. The monolayer adsorption capacity values of 187.26 mg/g for IMCR and 160.77 mg/g for NIMCR were very close to the maximum capacity values obtained at pH 5.0, temperature 298 K, adsorbent dose 50 mg, and contact time 3 h. The selectivity coefficient of uranyl ions and other metal ions on IMCR indicated an overall preference for uranyl ions. Furthermore, the IMCR could be regenerated through the desorption of the U(VI) ions using 0.5 M HNO(3) solution and could be reused to adsorb again.  相似文献   

8.
In this study, composite monoliths with porous structures were prepared using quaternized chitosan and diatom earth for protein separation. Quaternized chitosan (N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride) dissolved in water was mixed with diatom earth and crosslinked with glutaraldehyde under low-temperature conditions to form a cryogel. Interconnected porous monoliths were obtained after removing ice crystals from the cryogel. The monoliths adsorbed bovine serum albumin selectively from the solution mixture of bovine serum albumin and bovine ɤ-globulin, and bovine ɤ-globulin was recovered in the flow-through fraction. The adsorption selectivity was enhanced by changing the solution pH from 6.8 to 5.5. The adsorption of bovine serum albumin by the monolith was replicated at least five times following its washing with a buffer containing 400 mM NaCl and subsequent regeneration with a 10 mM acetate buffer. The composited monolith is a promising adsorbent for the removal of acidic proteins, such as serum albumin contamination in neutral proteins, for example, ɤ-globulins, in bioproduction processes.  相似文献   

9.
A study was conducted concerning the preparation and application of a novel synthetic oxide adsorbent of MgO-SiO2 type. The material was prepared via a sol–gel route, utilizing magnesium ethoxide and tetraethoxysilane as precursors of magnesium oxide and silica respectively, and ammonia as a catalyst. The powder was comprehensively analyzed with regard to chemical composition (EDS method), crystalline structure, morphology, characteristic functional groups, electrokinetic stability and porous structure parameters (BET and BJH models). The synthesized oxide adsorbent is amorphous, with irregularly shaped particles, a relatively large surface area of 612 m2/g, and negative surface charge over almost the whole pH range. Comprehensive adsorption studies were performed to investigate the adsorption of Cd(II) and Pb(II) ions on the MgO–SiO2 oxide adsorbent, including evaluation of adsorption kinetics and isotherms, the effect of pH, contact time and mass of adsorbent. It was shown that irrespective of the conditions of the adsorption process, the synthesized MgO–SiO2 adsorbent exhibits slightly better affinity to lead(II) than to cadmium(II) ions (sorption capacity of 102.02 mg(Pb2+)/g and 94.05 mg(Cd2+)/g). The optimal time for removal of the analyzed metal ions was 60 min, although adsorption reached equilibrium within 10 min for Pb(II) and within 15 min for Cd(II) ions, which was found to fit well with a type 1 pseudo-second-order kinetic model. Additionally, adsorption efficiency was affected by the pH of the reaction system—better results were obtained for pH ≥7 irrespective of the type of metal ion.  相似文献   

10.
Chitosan is characterized by a high affinity for metal ions due to its high content of amine groups. The sorption mechanism depends on both the protonation of these amine groups and the speciation of metal ions. Metal cations may be adsorbed at pH close to neutrality by chelation mechanism while metal anions can be adsorbed in acidic solutions through ionic interactions with protonated amine groups. Several examples are considered. The first example focuses on Cd sorption, which proceeds by a chelation mechanism on free non‐protonated amine groups in neutral media. In acidic solutions the protonation of amine groups limits the ability of amine groups to complex Cd. The cross‐linking of chitosan with glutaraldehyde also results in a dramatic decrease of sorption properties due to the decrease in the density of complexation sites available for sorption. The sorption of vanadium(V) and molybdenum(VI) illustrates the high capacity of chitosan for the sorption of oxo‐anions. They are very efficiently sorbed in acidic solutions by ionic interactions. The correlation of sorption capacities with the distribution of metal species shows that the sorbent has a greater affinity for highly charged anionic species. The sorption of complex anionic species such as chloro‐complexes of Pd and Pt; and that of copper complexed with organic ligands have also been studied. The optimum conditions for sorption are obtained when anionic complexes predominate in the solution. The chemical modification of chitosan, obtained by grafting of sulfur compounds, allows modifying the sorption mechanism: the ion‐exchange polymer is transformed to a dual ion‐exchange and chelating polymer.

Copper sorption isotherm in presence of sodium citrate (0.004 M ) (? RNH: fraction of protonated amine groups; ACuC: total fraction of anionic copper complexes; Cu‐FAL: total fraction of copper‐free anionic ligands).  相似文献   


11.
Summary: Naturally abundant biosorbants such as chitin and chitosan are recognized as excellent metal ligands, forming stable complexes with many metal ions, and serving as effective protein coagulating agents. Chitosan is a heteropolymer made of D-glucosamine and a small fraction of N-acetyl-D-glucosamine residues. Therefore, the adsorption ability of chitosan is found to be much higher than that of chitin, which has relatively fewer amino groups. Zeolites are crystalline microporous aluminosilicates with ion exchange properties suitable for a wide range of applications in catalysis and separation of liquid and gaseous mixtures. Incorporation in chitosan membranes is an effective method to control the diffusion outside the zeolite crystals and appropriately designed composite systems can find numerous opportunities for applications in wastewater treatment. In this paper we present the synthesis of zeolite-chitosan and zeolite-ethyl cellulose composites by encapsulation of clinoptilolite using a gelling solution of chitosan or an ethyl cellulose solution in ethyl acetate. The adsorption process of Cu2+ and Cd2+ on some adsorbents was investigated: clinoptillolite tuff (0.05 mm), chitosan flakes, ethyl cellulose, zeolite-chitosan and zeolite- ethyl cellulose composites. Zeolite-chitosan composites have been prepared by encapsulation of zeolites by a gelling solution of chitosan. Micrometric crystals of clinoptillolite were dispersed in a 3% chitosan solution in 1% aqueous acetic acid. The chitosan gel was formed and the zeolite crystals were encapsulated during the gelling process. The same procedure was used to obtain zeolite – ethyl cellulose composites. Study of the metal ion retention properties of different adsorbent materials was carried out using a steady state regime. The concentration of heavy metal ions in supernatant was determined by the atomic absorption spectrophotometric method. Adsorption isotherms of metal ions on adsorbents were determined and correlated with common isotherm equations such as Langmuir and Freundlich models.  相似文献   

12.
Chitosan is a kind of biodegradable natural polysaccharide, and it is a very promising adsorber material for removing metal ions from aqueous solutions. In this study, chitosan-based magnetic adsorbent CMC@Fe3O4 was synthesized by a one-step method using carboxymethyl chitosan (CMC) and ferric salts under relatively mild conditions. The Fe3O4 microspheres were formed and the core–shell structure of CMC@Fe3O4 was synthesized in the meantime, which was well characterized via SEM/TEM, XRD, VSM, FT-IR, thermo gravimetric analysis (TGA), XPS, size distribution, and zeta potential. The effects of initial arsenic concentration, pH, temperature, contact time, and ionic strength on adsorption quantity of inorganic arsenic was studied through batch adsorption experiments. The magnetic adsorbent CMC@Fe3O4 displayed satisfactory adsorption performance for arsenic in water samples, up to 20.1 mg/g. The optimal conditions of the adsorption process were pH 3.0, 30−50 °C, and a reaction time of 15 min. The adsorption process can be well described by pseudo-second-order kinetic model, suggesting that chemisorption was main rate-controlling step. The Langmuir adsorption model provided much higher correlation coefficient than that of Freundlich adsorption model, indicating that the adsorption behavior is monolayer adsorption on the surface of the magnetic adsorbents. The above results have demonstrated that chitosan-based magnetic adsorbent CMC@Fe3O4 is suitable for the removal of inorganic arsenic in water.  相似文献   

13.
Manganese oxide nanocomposite (Mn2O3/Mn3O4) was prepared by sol-gel technique and used as an adsorbent. Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FE-SEM) were used to characterize the adsorbent. The response surface methodology (RSM) was employed to evaluate the effects of solution pH, initial Fe (III) ions concentration, adsorbent weight, and contact time on the removal ratio of the Fe (III) ions. A total of 27 adsorption experimental runs were carried out employing the detailed conditions designed based on the Box-Behnken design (BBD). Results showed that the pH of the solution and initial Fe (III) ions concentration were the most significant parameters for Fe (III) ions removal. In process optimization, the maximal value of the removal ratio of Fe (III) was achieved as 95.80%. Moreover, the corresponding optimal parameters of adsorption process were as: contact time?=?62.5?min, initial Fe (III) concentration?=?50?mg/L, adsorbent weight?=?0.5?g, and pH?=?5. The experimental confirmation tests showed a strong correlation between the predicted and experimental responses (R2?=?0.9803). The fitness of equilibrium data to common isotherm equations such as Langmuir, Freundlich, and Temkin were also tested. The sorption isotherm of adsorbent was best described by the Langmuir model. The kinetic data were analyzed using pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich kinetic models. The adsorption kinetics of Fe (III) ions were well fitted with the pseudo-second-order kinetic model.  相似文献   

14.
Summary: The complexation agents 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formyl-phenol (BPMAMFF) and 2-[2-(hydroxybenzyl)-2-(pyridylmethyl)aminomethyl]-4-methyl-6-formyl-phenol (HBPAMFF) were immobilized on chitosan biopolymer in order to obtain new adsorbent materials for metal ions. The chitosan derivatives were characterized by IR spectroscopy, DSC, TGA, and CHN analysis. The characterization study proved that the chitosan surface was chemically modified with both complexing agents and however, it is expected that these modifications improve the selectivity for metal ions specific in relation to the chitosan.  相似文献   

15.
In this study, Chitosan and Chitosan-zinc oxide (ZnO) nanocomposite were prepared and applied as a low-cost adsorbent with high adsorption capacity for removing reactive red 198 (RR 198) dye from contaminated water. After preparation, it was characterized using FT-IR, XRD, and SEM. The effect of pH, temperature, time, adsorbent amount, and initial dye concentration were investigated in the removal efficiency of RR 198. The maximum adsorption capacity (qm) obtained from the Langmuir equation was 172.41 mg/g in adsorbent dose of 0.1 g/L, pH: 4, temperature of 25°C, adsorption time of 40 min. The thermodynamic parameters demonstrated the spontaneous and endothermic nature of the adsorption process. Due to the high efficiency of chitosan/ZnO nanocomposite in removal of RR 198 from water and advantages such as high adsorption capacity, simple synthesis, and easy application, it can be used as an effective method in the removal of RR 198 from water.  相似文献   

16.
以戊二醛为交联剂, 制备了壳聚糖(CS)-羧甲基纤维素(CMC)聚合物电解质膜. 用电子显微镜观察其表面形貌. IR分析表明该聚合物薄膜含有COOH, NH3+官能团, 具有两性离子的特征. 与CS膜或CMC膜相比, 该膜能稳定存在于酸碱溶液中. 膜特性研究表明CS-CMC聚合物电解质膜具有离子交换和选择性渗透能力, 可作为隔膜电解制备高铁酸盐.  相似文献   

17.
An S‐mandelic acid imprinted chitosan resin was synthesized by cross‐linking chitosan with glutaraldehyde in 2% acetic acid solution. S‐Mandelic acid imprinted chitosan resin was used to enantioselectively separate racemic mandelic acid in aqueous medium. When keeping the pH of sample solution (100 mM Tris‐H3PO4) at 3.5 and adsorption time at 40 min, the enantiomer excess of mandelic acid in supernatant was 78.8%. The adsorption capacities of S‐mandelic acid imprinted chitosan resin for S‐ and R‐mandelic acid were determined to be 29.5 and 2.03 mg/g, respectively. While the adsorption capacities of non‐imprinted cross‐linked chitosan for S‐ and R‐mandelic acid were 2.10 and 2.08 mg/g, respectively. The result suggests that the imprinted caves in S‐mandelic acid imprinted chitosan resin are highly matched with S‐mandelic acid molecule in space structure and spatial arrangement of action sites. Interestingly, the enantiomer excess value of mandelic acid in supernatant after adsorption of racemic mandelic acid by R‐mandelic acid imprinted cross‐linked chitosan was 25.4%. The higher enantiomer excess value by S‐mandelic acid imprinted chitosan resin suggests that the chiral carbons in chitosan and the imprinted caves in S‐mandelic acid imprinted chitosan resin combine to play roles for the enantioselectivity of S‐mandelic acid imprinted chitosan resin toward S‐mandelic acid. Furthermore, the excellent enantioselectivity of S‐mandelic acid imprinted chitosan resin toward S‐mandelic acid demonstrates that using chiral chitosan as functional monomer to prepare molecularly imprinted polymers has great potential in enantioseparation of chiral pharmaceuticals.  相似文献   

18.
Two types of magnetite (Fe3O4) nanoparticles were investigated as adsorbents for the simultaneous removal of Pb(II), Cd(II), and As(III) metal ions from aqueous solution. Magnetite nanoparticles were prepared by two synthesis procedures, both using water as solvent, and are referred to as conventional Fe3O4 nanoparticles and green Fe3O4 nanoparticles. The latter used Citrus limon (lemon) aqueous peel extract as the surfactant. Box–Behnken experimental design was used to investigate the effects of parameters such as initial concentration (20–150?mg?L?1), pH (2–9), and biomass dosage (1–5?g?L?1) on the removal of Pb(II), Cd(II), and As(III) ions. The optimum parameters for removal of the studied metal ions from aqueous solutions, including the initial ion concentration (20?mg?L?1), pH (5.5) and adsorbent dose (5?g?L?1), were determined. The pseudosecond-order model exhibited the best fit for the kinetic studies, while adsorption equilibrium isotherms were best described by Langmuir and Freundlich models. The optimum conditions were applied for the treatment wastewater. The removal efficiencies of Pb(II), Cd(II), and As(III) using the conventional and green synthesized Fe3O4 nanoparticles were 59.4?±?4.3, 18.7?±?1.9 and 17.5?±?1.6, and 98.8?±?5.6, 46.0?±?1.3, and 48.2?±?2.6%, respectively. These results demonstrate the potential of magnetite nanoparticles synthesized using C. limon peel extract as highly efficient adsorbents for the removal of Pb(II), Cd(II), and As(III) ions from aqueous solution.  相似文献   

19.
This work presents the results of the modification of lateral groups of chitosan (2-amino-2-desoxy-β-D-glucose) by the reaction with different amino acids (glycine, L-lysine, -glutamic acid and L-isoleucine) under acid catalysis. The Cu2+ adsorption capacity of pure chitosan and of the chemically modified chitosans were also evaluated. The modification reaction favored the amide formation of the C-2 carbon of the glycoside ring under the adopted reaction conditions: reaction time and temperature and using sulfuric acid as a catalyst. The Cu2+ adsorption kinetics and equilibrium response using pure chitosan and the chemically modified chitosans as adsorbents showes that the adsorption capacity of equilibrium depended on the initial ion concentration. The response of each adsorbent gave good correlation with Langmuir's isotherm model. The following maximum adsorption capacity constants were obtained: 172.4 mg/g for chitosan and 69.9, 34.4, and 26.7 mg/g for modified chitosan with glycine, L-glutamic acid, and L-lysine, respectively. The adsorptive capacity seems to be dependent on the length and complexity of the added group.  相似文献   

20.
Among a variety of microbial materials employed for biosorption, algae have added advantages of non-toxic and autotrophic nature. In this study, biosorption of Hg(II) was studied with red algal biomass of Porphyridium cruentum. The parameters affecting biosorption such as dosage of biosorbent, pH, contact time, initial metal concentration, temperature and effect of foreign metal cations in binary system were evaluated. Kinetic data were described with the help of pseudo-first-order and pseudo-second-order kinetic models. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models were applied to adsorption equilibrium data. According to the results, the maximum removal capacity (qmax) was 2.62?mg/g observed at pH 7 with 0.25?g/L of biosorbent dosage for Hg(II) solution containing 10?mg/L of metal ions. The Langmuir isotherm model fits best to the adsorption data while the kinetic data followed the pseudo-second-order model. Thermodynamics studies showed that the biosorption process of Hg(II) on P. cruentum was exothermic in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号