共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
新型高效原油破乳剂PNT-05的研制与应用 总被引:10,自引:0,他引:10
针对中原油田采油六厂二区原油破乳脱水过程中存在的脱水速度慢,乳化中间层厚等问题,通过分子结构设计手段,在非离子型破乳剂基础上,经酯化,在破乳剂分子中引入阳离子基团,合成出季胺盐阳离子型破乳剂PNT-05,利用季胺盐阳离子型破乳剂与助剂复配的方法室内解决了中原油田二区原油破乳脱水过程中顾在的问题,与油田现场用破乳剂相比,新的破乳剂体系脱水速度快,脱水效率高,使乳化中间层变薄或消失,同时探讨了季胺盐阳离子型破乳剂PNT-05的作用机制。 相似文献
3.
4.
Zhao Dan Wang Li Hua Li Hui Xia Feng Wang Li Gang Yang Shao Kang Wang 《Natural product research》2018,32(1):112-115
Oil extraction from onion was performed by steam distillation. Response surface methodology was applied to evaluate the effects of ratio of water to raw material, extraction time, zymolysis temperature and distillation times on yield of onion oil. The maximum extraction yield (1.779‰) was obtained as following conditions: ratio of water to raw material was 1, extraction time was 2.5 h, zymolysis temperature was 36° and distillation time was 2.6 h. The experimental values agreed well with those predicted by regression model. The chemical composition of extracted onion oil under the optimum conditions was analysed by gas chromatography-mass spectrometry technology. The results showed that sulphur compounds, like alkanes, sulphide, alkenes, ester and alcohol, were the major components of onion oil. 相似文献
5.
Synthesis and evaluation of demulsifiers with polyethyleneimine as accepter for treating crude oil emulsions 下载免费PDF全文
Chengjie Wang Shenwen Fang Ming Duan Yan Xiong Yongzhang Ma Wenjuan Chen 《先进技术聚合物》2015,26(5):442-448
Demulsifiers provide an important means of breaking water‐in‐crude oil, which are formed during crude oil exploitation. In present work, twenty polyether copolymers based on polyethyleneimine (PEI) were synthesized. The interfacial properties of the PEI polyethers at the water‐crude oil interface were described by interfacial tension (IFT) and interfacial dilational modulus. The effects of position isomerism, size of intermediate and ratio of ethylene oxide (EO)/propylene oxide (PO) on the demulsification efficiency of these polyethers were studied. The results show that different positions of the EO and PO in copolymers lead to huge difference in both interfacial properties and demulsification performance. Polymers with hydrophilic core and hydrophobic tails (Ex‐mn series) are not efficient on demulsification of water‐in‐oil emulsion whereas polymers with hydrophobic core and hydrophilic tails (Px‐mn series) are. Meanwhile, Px‐mn series show higher IFT and lower interfacial dilational modulus than Ex‐mn series. In the same series, the IFT and interfacial dilational modulus decrease with decreasing EO/PO ratio. In the series with best demulsification performance (P199‐mn series), 60 min water removal rates of the polymers increase with decreasing EO/PO ratio at 65°C. In other words, the longer the hydrophobic blocks of polymers, the stronger the demulsification capacity. The effect of concentration of demulsifier on the demulsification efficiency was also investigated. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
7.
Isabel C.F. Damin Morgana B. Dessuy Tamara S. Castilhos Márcia M. Silva Maria Goreti R. Vale Bernhard Welz Dmitri A. Katskov 《Spectrochimica Acta Part B: Atomic Spectroscopy》2009
The determination of trace elements in crude oil is difficult due to the complex nature of the sample and the various different chemical forms in which the metals can occur. The advantage of graphite furnace atomic absorption spectrometry is that only a minimum of sample pretreatment is required. In this work two techniques have been compared to establish a fast and reliable method for lead determination in crude oil. In the first one the crude oil samples were weighed directly onto solid sampling (SS) platforms and introduced into the graphite tube for analysis. In the second one the samples were prepared as oil-in-water emulsions and analyzed in a filter furnace (FF). Twenty μL of a mixture of 0.5 mg L− 1 Pd + 0.3 mg L− 1 Mg + Triton X-100 has been used as the modifier, and calibration against aqueous solutions has been used for both methods. The sensitivity obtained with the FF was more than a factor of two better than that with SS; however, as a larger sample mass could be introduced in the latter case, so that the limits of detection for both techniques were 0.004 mg kg− 1. Seven crude oil samples were analyzed using the two procedures, and all results were in agreement at a 95% confidence level using a paired Student's t-test. For validation purposes, three crude oil samples have been mineralized using an open-vessel acid digestion, and the results were in agreement with those found with direct sampling and with emulsion sampling using FF according to ANOVA test. Both methods are simple, fast and reliable, being appropriated for routine analysis; however, the direct method using SS technology should be preferred because of its simplicity, speed and commercial availability. 相似文献
8.
A multidimensional gas chromatography method for the analysis of hydrogen sulfide in crude oil and crude oil headspace 下载免费PDF全文
Darcy B. Hager 《Journal of separation science》2014,37(24):3649-3655
Two‐dimensional heart‐cutting gas chromatography is used to analyze dissolved hydrogen sulfide in crude samples. Liquid samples are separated first on an HP‐PONA column, and the light sulfur gases are heart‐cut to a GasPro column, where hydrogen sulfide is separated from other light sulfur gases and detected with a sulfur chemiluminescence detector. Heart‐cutting is accomplished with the use of a Deans switch. Backflushing the columns after hydrogen sulfide detection eliminates any problems caused by high‐boiling hydrocarbons in the samples. Dissolved hydrogen sulfide is quantified in 14 crude oil samples, and the results are shown in this work. The method is also applicable to the analysis of headspace hydrogen sulfide over crude oil samples. Gas hydrogen sulfide measurements are compared to liquid hydrogen sulfide measurements for the same sample set. The chromatographic system design is discussed, and chromatograms of representative gas and liquid measurements are shown. 相似文献
9.
In many oil production sites water injection is used as a piston to push the crude out of the well. As the age of the field progresses, the ratio of water to oil produced increases. Agitation of a water and crude oil mixture may give stable water-in-oil emulsion in which the water remains dispersed for a long period of time. These emulsions can cause severe problems in production and transport processes since they normally possess high stability and viscosity. The most important water properties which may contribute to the emulsion stability include pH and additive content. In this study, we report on the effect of both, water pH and the presence of surfactant molecules (anionic, cationic or non-ionic) on the stability of an Algerian crude oil (Haoudh el Hamra well) aqueous emulsion prepared by a mechanical agitation procedure. The stability was followed by the test-bottle method to measure the resolved water separated from the emulsion, and optical microscopy to visualize the dispersed water droplets in the oil phase. The results of the effects of varying the aqueous-phase pH suggest that the neutral medium is more efficient than acidic or basic environment for stabilizing the emulsions. The addition of non-ionic surfactants has a better potential to improve crude oil emulsion stability with respect to both cationic and anionic surfactants which do not show any improvement in the oil/water phase compatibility. 相似文献
10.
R.A. Mohammed A.I. Bailey P.F. Luckham S.E. Taylor 《Colloids and surfaces. A, Physicochemical and engineering aspects》1993,80(2-3):237-242
The importance of the interfacial rheology in determining the stability of water-in-Buchan crude oil emulsions has been demonstrated in part 1 of this series of papers (R.A. Mohammed, A.I. Bailey, P.F. Luckham and S.E. Taylor, Colloids Surfaces A: Physicochem. Eng. Aspects, 80(1993)223). In part 2, interfacial tensions of crude oil, and solutions of asphaltenes and resins in a model oil have been investigated. Surface pressure vs. area (Π—A) curves of monolayers of asphaltenes, resins and their mixtures have been established. In its dependence on the ratio of resins to asphaltenes, the pseudostatic dilatational modulus has high values for low resin-to-asphaltene ratios and low values for high resin-to-asphaltene ratios. This is expected to throw light on the cause of the enhanced stability of water-in-crude oil emulsions. 相似文献
11.
Albert Barrabino Serkan Keleşoğlu Mona Eftekhardadkhah Sébastien Simon 《Journal of Dispersion Science and Technology》2017,38(12):1677-1686
This study compares by means of new and advanced destabilization protocols the efficiency of new chemistry environmentally friendly (yellow) demulsifiers with already commercially available red demulsifiers in destabilizing two types of water-in-oil (w/o) emulsions: petroleum crude oil emulsions and model dense packed layers (DPLs). Oil–water separation profiles were measured by low-field nuclear magnetic resonance (NMR), which allows monitoring the water content as well as the mean droplet size in the emulsion as function of the sample height and the time. Separation profiles measured by NMR depicted an increase of the free water release kinetics as the concentration of demulsifier as well as the sedimentation rate increased. The water resolution was not substantially improved by increasing the concentration further while the water quality was worse, most likely due to adsolubilization. There was no observation of DPL formation in these crude oil emulsions. Four different demulsifiers were tested on a model DPL and compared with normal crude oil emulsions. One chemical showed higher efficiency in destabilizing DPL than destabilizing crude oil emulsion. The interfacial rheological properties for one of the systems showed a slight increase in the elastic modulus (E′), as the concentration of demulsifier increased. The increment of the elastic modulus is not totally understood. The most central parameters were represented by principal component analysis (PCA). PCA did not contribute in a better characterization of the chemicals. The new-generation yellow demulsifiers did not reproduce the efficiency of commercially available, less environmentally friendly, (red) demulsifiers. 相似文献
12.
《Arabian Journal of Chemistry》2022,15(9):104025
Banana peel fiber adsorbent (BPF) with well-arranged substructure of pores was fabricated via esterification reaction with organic acid and biomass. The emerged adsorbent (BPF) was employed in taking away crude oil from water surface. Three machine learning tools such as RSM, ANN and ANFIS was employed for the modelling and optimization of the process. From results, the optimal oil layer removal of 98.2% was achieved at oil water ratio of 0.2 g /100 cm3. For now, BPF displayed high adsorptive prospect at a very low pH of 4 with 96.8% oil removal. On the other hand, the activation energy, enthalpy change and entropy change of the system are (18.56, 25.44, ?0.751 KJ/mols) and (25.77, 29.16, ?0.813 KJ/mols) designating a non-spontaneous system. The process of removal by BPF really matched the Langmuir isotherm model as proved by statistical error analysis with highest adsorption capacity of 49.33 mg/g as shown through equilibrium modeling. RSM displayed the optimum conditions of the key variables such as temperature, oil concentration, adsorbent dosage, pH and time as 100 °C, 0.2 g/100 cm3, 1.5 g, 2 and 75 mins, respectively. Analysis of the three generic algorithm indicated significant oil removal prediction with quite remarkably similar coefficient of correlation of 0.999. Additional statistical analysis suggested that RSM was marginally better than ANN and ANFIS for the modelling of crude oil removal via esterified banana peels fiber. 相似文献
13.
The crude oil is in most cases accompanied with water and natural gas. For this reason, it is important to understand the rheology of the oil emulsion. There are already many works relating to rheology of the oil/water emulsion. However, studies on high-pressure rheology of water/crude oil emulsion in the presence of CH4 are rare. In this work, light crude oil with characteristics of high wax content, which is typical in Northwest China, was studied. The rheology of water/crude oil emulsion in the presence of CH4 under various conditions were fully studied. The results show that the crude oil emulsion showed obvious characteristics of non-Newtonian fluid at a lower temperature. Before water fraction reached a certain limit, the viscosity increases with the increase of water fraction, when water fraction reaches and exceeds the limit the emulsion viscosity drops with the increase of water fraction. The shear stress–shear rate curves become similar as the increase of temperature, indicating the decreasing effect of temperature on the relation between shear stress and shear rate. When the pressure reaches 8 MPa, the shear stress measured with CH4 in the system surpasses that measured without CH4. At higher pressure, CH4 shows obvious influence on the rheology. 相似文献
14.
R. A. Mohammed A. I. Bailey P. F. Luckham S. E. Taylor 《Colloids and surfaces. A, Physicochemical and engineering aspects》1993,80(2-3):223-235
Rheological properties of Buchan crude oil—water interfaces have been determined using a biconical bob rheometer. The effects of temperature and the presence of surface-active demulsifiers on film characteristics have been evaluated. Free oscillation and creep modes have been used, depending on the relative viscoelastic behaviour of the films. Film ageing is particularly significant, whilst temperature and the nature and concentration of any demulsification chemicals also contribute significantly. Further detailed understanding of interfacial film rheology is considered to be desirable for a complete appreciation of the stability of water-in-crude oil emulsions. 相似文献
15.
The ultrasonic extraction (UE) method of anthocyanin from Clitoria ternatea flowers using response surface methodology (RSM) was performed in this study. By using RSM, the objective is to optimise the extraction yield of anthocyanin from C. ternatea which is influenced by various factors, including the extraction temperature, time, ratio of solvent to solid and ultrasonic power. The empirical model was investigated by performing first-level optimisation in a two-level factorial design with Design Expert 7 software. In comparison with the conventional solvent extraction, UE showed a 246.48% better extraction yield and produced an anthocyanin extract with a radical scavenging activity of 68.48% at the optimised factors of 50°C, 150 min, 15 mL/g and 240 W. 相似文献
16.
Efficiencies of cationic gemini surfactant additives in improving the pour point depressant of crude oil were investigated. The length of alkyl chain is a major factor affecting the improvement of the pour point depression. The adsorption behavior of these gemini surfactants at air/solution and oil/solution interfaces were investigated by measuring the surface tension and interfacial tension as functions of concentration. It is found that there is a good relation between surface properties especially interfacial tension of the gemini surfactants and their efficiency in depressing the pour point. Also, the surface parameters and free energies of micellization and adsorption confirm the decreasing and improving of pour point depression. Crystallization study in crude oil revealed the relationship between the structure and activity of gemini surfactant additives. It is found that the x-ray diffraction patterns of waxes with additives are remarkably different from those without additives. The mechanism of the depressants action has been suggested according the adsorption of each additive. Adsorption of the additive on the surface of the wax particles inhibits their growth and alters the crystal habits through micelle core. Pretreatment of the crude oil with pour point depressants has received the greatest acceptance due to its simplicity and economy. 相似文献
17.
In this work, the onset of asphaltene flocculation for an Iranian crude oil by titration of samples with heptane in the presence and absence of the TiO2/SiO2 nanofluids was obtained by Near-IR spectroscopy. Nanoparticles and nanocomposites were characterized by BET, FESEM, EDX, XRD, and XRF analysis. Modeling and optimization of inhibition of asphaltene flocculation process by TiO2/SiO2 nanofluids were conducted by response surface methodology (RSM). Under optimum conditions (nanocomposite composition = 0.04 wt% (80%TiO2:20%SiO2), salinity = 4.01 wt%, and pH = 3.42), the onset point increased. For nanofluids stability analysis, the optimum nanofluid was compared with the two other nanofluids (SiO2 and TiO2) by visual observation method. The results indicated that high stability and surface area of the 80%TiO2 nanocomposites increase asphaltene adsorption on the particles surface that subsequently increases the onset point. In addition, the optimum nanofluid performance on the carbonate rocks was evaluated by contact angle and core flooding experiments. The 80% TiO2 nanofluid changed the wettability of carbonate rocks from strongly oil-wet to strongly water-wet condition and also decreased the residual oil saturation and enhanced the oil recovery with an increase in the recovery factor of about 15%. 相似文献
18.
In recent work, it has been shown that electrothermal atomic absorption spectrometry (ET AAS) can be used to differentiate between volatile and non-volatile nickel and vanadium compounds in crude oil. In the present work, the distribution of these two groups of compounds over different fractions of crude oil was investigated. For this purpose two crude oil samples were separated in two steps: firstly, the asphaltenes were precipitated with n-heptane, and secondly, the maltenes were loaded on a silica column and eluted with solvents of increasing polarity. The four fractions of maltenes eluted from silica column were: F1, saturated and light aromatics; F2, polyaromatics; F3, resins; and F4, polar compounds. Fractions F1 and F2 were further investigated using gas chromatography, and all fractions were characterized by CHN analysis, confirming the increase of aromatics in the fractions 2, 3, 4 and asphaltenes. For the determination of Ni and V by ET AAS, oil-in-water emulsions were prepared. The speciation analysis was carried out measuring without chemical modifier (stable compounds) and with 20 μg palladium (total Ni and V) and the volatile fraction was calculated by difference. The limits of detection were 0.02 μg g−1 and 0.06 μg g−1, for Ni and V, respectively, based on an emulsion of 2 g of oil in 10 mL. The volatile species of Ni and V were associated with fractions F3 and F4, while only thermally stable Ni and V was precipitated in part together with the asphaltenes. 相似文献
19.
《Comptes Rendus Chimie》2016,19(4):538-543
The present study deals with the determination of optimal values of operating parameters such as temperature and pressure leading to the best yield of a supercritical CO2 extraction of essential oil from local rosemary plants, using the response surface methodology (RSM). The maximum of essential oil recovery percentage relative to the initial mass of leaf powder was 3.52 wt%, and was obtained at 313 K and 22 MPa.A second-order polynomial was used to express the oil recovery and the calculated mass of recovered oil using the RSM was very close to the experimental value, confirming the reliability of this technique.The chemical composition of the Algerian rosemary oil under the obtained optimal conditions (313 K and 22 MPa), determined by GC–MS analysis, revealed the presence of camphor (major compound) (52.12%), 1,8-cineole (9.65%), camphene (7.55%), α-pinene (6.05%), borneol (3.52%), aroma dendrene (2.11%), verbenone (1.97%), α-caryophyllene (1.71%), and others. 相似文献
20.
In the present work, three polymeric surfactants were prepared and used as demulsifiers; polyalkyl phenol formaldehyde monoethanol amine ethoxylate, eo, 136(D1), polyalkyl phenol formaldehyde diethanol amine ethoxylate, eo, 37(D2) and polyalkyl phenol formaldehyde triethanol amine ethoxylate, eo, 21.5(D3). Their demulsification potency in breaking water‐in‐crude oil emulsions was investigated. In this respect, two naturally occurring Egyptian water‐in‐oil (w/o) emulsions, one of them was waxy and the other was asphaltenic, were used in order to study the demulsification power of these compounds. The data revealed that, the resolution of water from waxy crude emulsion was easier than asphaltenic crude emulsion. The demulsification efficiency increases with increasing demulsifier concentration, contact time and temperature. The interfacial tension (IFT) at the crude oil–water interface was measured, it was found that the concentration of demulsifiers required to cause a minimum IFT are always less than these indicating a maximum demulsification efficiency. All the results were discussed in relation to emulsifier chemical structure and crude oil composition. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献