首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.  相似文献   

2.
Storage and transportation of natural gas as gas hydrate (“gas-to-solids technology”) is a promising alternative to the established liquefied natural gas (LNG) or compressed natural gas (CNG) technologies. Gas hydrates offer a relatively high gas storage capacity and mild temperature and pressure conditions for formation. Simulations based on the van der Waals–Platteeuw model and molecular dynamics (MD) are employed in this study to relate the methane gas content/occupancy in different hydrate systems with the hydrate stability conditions including temperature, pressure, and secondary clathrate stabilizing guests. Methane is chosen as a model system for natural gas. It was found that the addition of about 1% propane suffices to increase the structure II (sII) methane hydrate stability without excessively compromising methane storage capacity in hydrate. When tetrahydrofuran (THF) is used as the stabilizing agent in sII hydrate at concentration between 1% and 3%, a reasonably high methane content in hydrate can be maintained (∼85–100, v/v) without dealing with pressures more than 5 MPa and close to room temperature.  相似文献   

3.
Lattice dynamics simulation of several gas hydrates (helium, argon, and methane) with different occupancy rates has been performed using TIP3P potential model. Results show that the coupling between the guest and host is not simple as depicted by the conventional viewpoints. For clathrate hydrate enclosing small guest, the small cages are dominantly responsible for the thermodynamic stability of clathrate hydrates. And the spectrum of methane hydrate is studied compared with argon hydrate, then as a result, shrink effect from positive hydrogen shell is proposed.  相似文献   

4.
With a fine accuracy and conciseness, Chen-Guo hydrate model has been widely applied to predict the hydrates formation conditions of different systems, including inhibitor containing systems and salt containing systems. However, the model could not predict the formation condition of carbon monoxide (CO) hydrates as the parameter values of CO required in the calculation are not available. In this work, CO hydrate formation pressures were measured at different temperatures in tetrahydrofuran (THF) solution first, then the parameter values of CO required in Chen-Guo model were fitted completely for the first time. On that basis, the hydrates formation conditions of different systems including CO were predicted by the model to verify the accuracy of the fitted values. The comparison between the predicted results and our experimental data (or literature data) shows that the absolute average deviation percentage (AADP) of structure I hydrates is no more than 1.481%, and the AADP of structure II hydrates is less than 6.796%. It is proved that the fitted parameter values of CO are credible, and Chen-Guo model is capable of predicting the formation conditions of CO hydrates. The experimental results and model modifications extend the applied range of Chen-Guo model and promote the development of CO hydrates thermodynamics research.  相似文献   

5.
The specific surface area of methane hydrates, formed both in the presence and absence of sodium dodecyl sulfate (SDS) and processed in different manners (stirring, compacting, holding the hydrates at the formation conditions for different periods of time, cooling the hydrates for different periods of time before depressurizing them), was measured under atmospheric pressure and temperatures below ice point. It was found that the specific surface area of hydrate increased with the decreasing temperature. The methane hydrate in the presence of SDS was shown to be of bigger specific surface areas than pure methane hydrates. The experimental results further demonstrated that the manners of forming and processing hydrates affected the specific surface area of hydrate samples. Stirring or compacting made the hydrate become finer and led to a bigger specific surface area. Supported by the National natural Science Foundation of China (Grant Nos.20490207, 2076145, uo633003), Program for New Century Excellent Talents in University and National The National High Technology Research and Development Program of China Project.  相似文献   

6.
The effective thermal conductivities of gas-saturated porous methane hydrates were measured by a single-sided transient plane source (TPS) technique and simulated by a generalized fractal model of porous media that based on self-similarity.The density of porous hydrate,measured by the volume of the sample in the experimental system,was used to evaluate the porosity of methane hydrate samples.The fractal model was based on Sierpinski carpet,a thermal-electrical analogy technique and one-dimensional heat flow assumption.Both the experimental and computational results show the effective thermal conductivity of methane hydrate decreases with the porosity increase.The porosity of 0.3 can reduce the thermal conductivity of the methane hydrate by 25%.By analysis of the experimental data and the simulative result,the optimized thermal conductivity of the zero-porosity methane hydrate is about 0.7 W m-1K-1.  相似文献   

7.
常见客体分子对笼型水合物晶格常数的影响   总被引:1,自引:0,他引:1  
Natural gas hydrates are considered as ideal alternative energy resources for the future, and the relevant basic and applied research has become more attractive in recent years. The influence of guest molecules on the hydrate crystal lattice parameters is of great significances to the understanding of hydrate structural characteristics, hydrate formation/decomposition mechanisms, and phase stability behaviors. In this study, we test a series of artificial hydrate samples containing different guest molecules (e.g. methane, ethane, propane, iso-butane, carbon dioxide, tetrahydrofuran, methane + 2, 2-dimethylbutane, and methane + methyl cyclohexane) by a low-temperature powder X-ray diffraction (PXRD). Results show that PXRD effectively elucidates structural characteristics of the natural gas hydrate samples, including crystal lattice parameters and structure types. The relationships between guest molecule sizes and crystal lattice parameters reveal that different guest molecules have different controlling behaviors on the hydrate types and crystal lattice constants. First, a positive correlation between the lattice constants and the van der Waals diameters of homologous hydrocarbon gases was observed in the single-guest-component hydrates. Small hydrocarbon homologous gases, such as methane and ethane, tended to form sI hydrates, whereas relatively larger molecules, such as propane and iso-butane, generated sⅡ hydrates. The hydrate crystal lattice constants increased with increasing guest molecule size. The types of hydrates composed of oxygen-containing guest molecules (such as CO2 and THF) were also controlled by the van der Waals diameters. However, no positive correlation between the lattice constants and the van der Waals diameters of guest molecules in hydrocarbon hydrates was observed for CO2 hydrate and THF hydrate, probably due to the special interactions between the guest oxygen atoms and hydrate "cages". Furthermore, the influences of the macromolecules and auxiliary small molecules on the lengths of the different crystal axes of the sH hydrates showed inverse trends. Compared to the methane + 2, 2-dimethylbutane hydrate sample, the length of the a-axis direction of the methane + methyl cyclohexane hydrate sample was slightly smaller, whereas the length of the c-axis direction was slightly longer. The crystal a-axis length of the sH hydrate sample formed with nitrogen molecules was slightly longer, whereas the c-axis was shorter than that of the methane + 2, 2-dimethylbutane hydrate sample at the same temperature.  相似文献   

8.
In this communication, new experimental data are reported for the water content of methane and two synthetic gas mixtures in equilibrium with hydrates at pressures range from 5 to 40 MPa and temperature down to 251.65 K. The measurements have been made on equilibrated samples taken from a high-pressure variable volume hydrate cell using a new analyser based upon tuneable diode laser absorption spectroscopy (TDLAS) technology. A statistical thermodynamic approach, with the Cubic-Plus-Association equation of state, is employed to model the phase equilibria. The hydrate-forming conditions are modelled by the solid solution theory of van der Waals and Platteeuw. The thermodynamic model was used to predict the water content of methane and synthetic gases in equilibrium with gas hydrates.  相似文献   

9.
The decomposition kinetic behaviors of methane hydrates formed in 5 cm3 porous wet activated carbon were studied experimentally in a closed system in the temperature range of 275.8-264.4 K. The decomposition rates of methane hydrates formed from 5 cm3 of pure free water and an aqueous solution of 650 g x m(-3) sodium dodecyl sulfate (SDS) were also measured for comparison. The decomposition rates of methane hydrates in seven different cases were compared. The results showed that the methane hydrates dissociate more rapidly in porous activated carbon than in free systems. A mathematical model was developed for describing the decomposition kinetic behavior of methane hydrates below ice point based on an ice-shielding mechanism in which a porous ice layer was assumed to be formed during the decomposition of hydrate, and the diffusion of methane molecules through it was assumed to be one of the control steps. The parameters of the model were determined by correlating the decomposition rate data, and the activation energies were further determined with respect to three different media. The model was found to well describe the decomposition kinetic behavior of methane hydrate in different media.  相似文献   

10.
The formation of CH4-CO2 mixed gas hydrates was observed by measuring the change of vapor-phase composition using gas chromatography and Raman spectroscopy. Preferential consumption of carbon dioxide molecules was found during hydrate formation, which agreed well with thermodynamic calculations. Both Raman spectroscopic analysis and the thermodynamic calculation indicated that the kinetics of this mixed gas hydrate system was controlled by the competition of both molecules to be enclathrated into the hydrate cages. However, the methane molecules were preferentially crystallized in the early stages of hydrate formation when the initial methane concentration was much less than that of carbon dioxide. According to the Roman spectra, pure methane hydrates first formed under this condition. This unique phenomenon suggested that methane molecules play important roles in the hydrate formation process. These mixed gas hydrates were stored at atmospheric pressure and 190 K for over two months to examine the stability of the encaged gases. During storage, CO2 was preferentially released. According to our thermodynamic analysis, this CO2 release was due to the instability of CO2 in the hydrate structure under the storage conditions.  相似文献   

11.
Methane storage in structure H (sH) clathrate hydrates is attractive due to the relatively higher stability of sH as compared to structure I methane hydrate. The additional stability is gained without losing a significant amount of gas storage density as happens in the case of structure II (sII) methane clathrate. Our previous work has showed that the selection of a specific large molecule guest substance (LMGS) as the sH hydrate former is critical in obtaining the optimum conditions for crystallization kinetics, hydrate stability, and methane content. In this work, molecular dynamics simulations are employed to provide further insight regarding the dependence of methane occupancy on the type of the LMGS and pressure. Moreover, the preference of methane molecules to occupy the small (5(12)) or medium (4(3)5(6)6(3)) cages and the minimum cage occupancy required to maintain sH clathrate mechanical stability are examined. We found that thermodynamically, methane occupancy depends on pressure but not on the nature of the LMGS. The experimentally observed differences in methane occupancy for different LMGS may be attributed to the differences in crystallization kinetics and/or the nonequilibrium conditions during the formation. It is also predicted that full methane occupancies in both small and medium clathrate cages are preferred at higher pressures but these cages are not fully occupied at lower pressures. It was found that both small and medium cages are equally favored for occupancy by methane guests and at the same methane content, the system suffers a free energy penalty if only one type of cage is occupied. The simulations confirm the instability of the hydrate when the small and medium cages are empty. Hydrate decomposition was observed when less than 40% of the small and medium cages are occupied.  相似文献   

12.
Gas hydrates represent an attractive way of storing large quantities of gas such as methane and carbon dioxide, although to date there has been little effort to optimize the storage capacity and to understand the trade‐offs between storage conditions and storage capacity. In this work, we present estimates for gas storage based on the ideal structures, and show how these must be modified given the little data available on hydrate composition. We then examine the hypothesis based on solid‐solution theory for clathrate hydrates as to how storage capacity may be improved for structure II hydrates, and test the hypothesis for a structure II hydrate of THF and methane, paying special attention to the synthetic approach used. Phase equilibrium data are used to map the region of stability of the double hydrate in PT space as a function of the concentration of THF. In situ high‐pressure NMR experiments were used to measure the kinetics of reaction between frozen THF solutions and methane gas, and 13C MAS NMR experiments were used to measure the distribution of the guests over the cage sites. As known from previous work, at high concentrations of THF, methane only occupies the small cages in structure II hydrate, and in accordance with the hypothesis posed, we confirm that methane can be introduced into the large cage of structure II hydrate by lowering the concentration of THF to below 1.0 mol %. We note that in some preparations the cage occupancies appear to fluctuate with time and are not necessarily homogeneous over the sample. Although the tuning mechanism is generally valid, the composition and homogeneity of the product vary with the details of the synthetic procedure. The best results, those obtained from the gas–liquid reaction, are in good agreement with thermodynamic predictions; those obtained for the gas–solid reaction do not agree nearly as well.  相似文献   

13.
Modulated DSC for gas hydrates analysis   总被引:1,自引:0,他引:1  
Modulated DSC has been applied to the study of methane, ethane and propane hydrates at different hydrate and ice concentrations. The reversing component of the TMDSC curves, makes it possible to characterize such hydrates. Methane and ethane hydrates show the melting-decomposition peak at a temperatures higher than the ice contained in the sample, while propane hydrate melts and decomposes at lower temperature than the ice present in the sample. The hydrate peaks tend to disappear if the hydrate is stored at atmospheric pressure. Guest size and cavity occupation fix the heat of dissociation and stability of the hydrates, as confirmed by parallel tests on tetrahydrofurane hydrates.  相似文献   

14.

The formation of gaseous (gas) hydrates for storage, separation and transportation application is essential. In this regard, a comprehensive study of this case is essential. Semi-clathrate hydrates have higher temperature stability and are formed in a stable range. The purpose of this study is review the experimental and modeling of the semi-clathrate hydrates, to investigate the equilibrium conditions for the formation/dissociation of them based on the type of thermodynamic promoters like TBAB, TBAC, TBAF, TBANO3 and TBP groups. This review is consist of 4 overall section, at first an introduction to semi-clathrate hydrates has defined. After that, the experimental research has discussed through different gas systems such as CO2, CH4, N2, H2 etc. Also, the target of each study, like the CO2 capture, separation of CH4, formation/dissociation equilibrium conditions, are expressed. Then, in the modeling section, the different types of thermodynamic modeling like, equaling fugacity, intelligence computing, Gibbs free energy minimization and Chen-Guo method are collected. At final section, a comparison between types of promoter showed that the addition of TBAF to aqueous solution has the best promotion effect on the CO2 clathrate hydrate formation. Also, the results of comparing the concentration of promoters have shown that up to a certain amount of TBAB, the salt's role as a promoter and by addition concentration of promoter, has an inhibition effect. Also, besides the results of the comparison different promoters on equilibrium conditions of different gaseous hydrates, have indicated that, TBAB has the most significant impact on carbon dioxide hydrate.

  相似文献   

15.
Hydrate that is exposed to fluid phases which are undersaturated with respect to equilibrium with the hydrate will dissociate due to gradients in chemical potential. Kinetic rates of methane hydrate dissociation towards pure water and seawater is important relative to hydrate reservoirs that are partly exposed towards the ocean floor. Corresponding results for carbon dioxide hydrate is important relative to hydrate sealing effects related to storage of carbon dioxide in cold aquifers. In this work we apply a phase field theory to the prediction of carbon dioxide hydrate and methane hydrate dissociation towards pure water at various conditions, some of which are inside and some which are outside the stability regions of the hydrates with respect to temperature and pressure. As expected from the differences in water solubility the methane hydrate dissolves significantly slower towards pure water than carbon dioxide hydrate.  相似文献   

16.
Investigation on Gas Storage in Methane Hydrate   总被引:1,自引:0,他引:1  
The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactantalkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate inductiontime and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions werefound to reduce hydrate induction time, increase methane hydrate formation rate and improve methanestorage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescentsystem and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300x 10-6 and 500x 10-6 for methane hydrate formation systemrespectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrateformation rate, but could not improve methane storage in hydrates.  相似文献   

17.
Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within +/-2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol(-1) K(-1) for 1/nCH4.H2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled.  相似文献   

18.
Extensive equilibrium molecular dynamics simulations have been performed to investigate thermal conduction mechanisms via the Green-Kubo approach for (type II) hydrogen hydrate, at 0.05 kbar and between 30 and 250 K, for both lightly filled H(2) hydrates (1s4l) and for more densely filled H(2) systems (2s4l), in which four H(2) molecules are present in the large cavities, with respective single- and double-occupation of the small cages. The TIP4P water model was used in conjunction with a fully atomistic hydrogen potential along with long-range Ewald electrostatics. It was found that substantially less damping in guest-host energy transfer is present in hydrogen hydrate as is observed in common type I clathrates (e.g., methane hydrate), but more akin in to previous results for type II and H methane hydrate polymorphs. This gives rise to larger thermal conductivities relative to common type I hydrates, and also larger than type II and H methane hydrate polymorphs, and a more crystal-like temperature dependence of the thermal conductivity.  相似文献   

19.
Based on our theoretical and experimental work carried out during the last decade, our understanding of the thermodynamics and the kinetics of formation and decomposition of gas hydrates is presented. Hydrate formation is modelled as a crystallization process where two distinct processes (nucleation and growth) are involved. Prior to the nucleation the concentration of the gas in the liquid water exceeds that corresponding to the vapor-liquid equilibrium. This supersaturation is attributed to the extensive structural orientation in the liquid water and is necessary for the phase change to occur. The growth of the hydrate nuclei or the decomposition of a hydrate particle are modelled as two-step procedures. Only one adjustable parameter for each hydrate forming gas is required for the intrinsic rate of formation or decomposition. In addition the inhibiting effects of electrolytes or methanol on hydrate formation are discussed and experimental data on methane gas hydrate formation in the presence of aqueous solutions of 3% NaCl and 3% NaCl + 3% KCI, are presented along with the predicted values. Finally, the relevence of the ideas to the technological implications of gas hydrates as well as areas where future research is needed are discussed.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

20.
For the first time, the compositions of argon and methane high-pressure gas hydrates have been directly determined. The studied samples of the gas hydrates were prepared under high-pressure conditions and quenched at 77 K. The composition of the argon hydrate (structure H, stable at 460-770 MPa) was found to be Ar.(3.27 +/- 0.17)H(2)O. This result shows a good agreement with the refinement of the argon hydrate structure using neutron powder diffraction data and helps to rationalize the evolution of hydrate structures in the Ar-H(2)O system at high pressures. The quenched argon hydrate was found to dissociate in two steps. The first step (170-190 K) corresponds to a partial dissociation of the hydrate and the self-preservation of a residual part of the hydrate with an ice cover. Presumably, significant amounts of ice Ic form at this stage. The second step (210-230 K) corresponds to the dissociation of the residual part of the hydrate. The composition of the methane hydrate (cubic structure I, stable up to 620 MPa) was found to be CH(4).5.76H(2)O. Temperature dependence of the unit cell parameters for both hydrates has been also studied. Calculated from these results, the thermal expansivities for the structure H argon hydrate are alpha(a) = 76.6 K(-1) and alpha(c) = 77.4 K(-1) (in the 100-250 K temperature range) and for the cubic structure I methane hydrate are alpha(a) = 32.2 K(-1), alpha(a) = 53.0 K(-1), and alpha(a) = 73.5 K(-1) at 100, 150, and 200 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号