首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The work reported here demonstrates an approach to the fabrication of chemically reactive and topographically patterned hydrogels using the azlactone‐functionalized polymer poly(2‐vinyl‐4,4'‐dimethylazlactone) (PVDMA) and the hydrophilic diamine Jeffamine®. Gels were initially assembled in DMSO but can be subsequently transferred into aqueous media to form hydrogels. Spectroscopic characterization of assembled gels demonstrated that variation in the stoichiometric ratio of azlactones to amines during gel synthesis permits control over the extent of crosslinking in the gels. Residual azlactones not consumed during crosslinking can be exploited to further functionalize these gels with hydrophobic, hydrophilic, and macromolecular amines that influence the physicochemical properties of these materials in aqueous solvents. The surface and bulk of these gels can be differentially functionalized (i.e., different functional groups on the gel surface relative to the bulk) by taking advantage of different rates of diffusion of macromolecular amines versus small molecule amines into assembled gels. Finally, these azlactone‐functionalized gels can be topographically patterned with microwell arrays using a replica molding technique and chemically modified postfabrication with amine nucleophiles. This reactive approach to the fabrication of topographically patterned and chemically functionalized hydrogels offers a straightforward method for the rapid synthesis of micropatterned scaffolds of interest in a broad range of applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3185–3194  相似文献   

2.
In this paper, it is shown how a percolation process can be used to describe the inhomogeneities of polymer concentration, appearing in gels prepared by random crosslinking of a semi-dilute solution, and how they are modified by swelling or stretching of the network. Neutron scattering experimental data are compared to the predictions of this model in the isotropic and anisotropic cases. A good agreement is found. In particular, “abnormal” butterfly patterns in the iso-intensity curves have been detected, as expected from the model.  相似文献   

3.
We report a new strategy to realize the selective transportation of microdroplets assisted by a superhydrophobic surface with pH‐responsive adhesion. On the surface, only basic microdroplets can be pinned and acidic or neutral microdroplets can easily roll off. Therefore, by using the surface as a “mechanical hand”, microdroplets can be transported selectively according to one’s requirements by simply controlling the pH of the solution. The special ability of the surface to achieve selective transportation is ascribed to the following two reasons: 1) superhydrophobicity, which can avoid the wetting problem, and 2) pH‐responsive adhesion, which results from the combined effect of chemical variation of the carboxylic acid group and microstructures on the surface. Furthermore, we also demonstrated a process of selective transportation of microdroplets for applications in droplet‐based microreactors through our surface. The results reported herein advance a new method to realize the selective transportation of microdroplets and we believe that this method could potentially be used in a wide range of applications, such as biomolecular detection and transportation in biochips.  相似文献   

4.
A highly efficient strategy for the simultaneous dual surface encoding of 2D and 3D microscaffolds is reported. The combination of an oligo(ethylene glycol)‐based network with two novel and readily synthesized monomers with photoreactive side chains yields two new photoresists, which can be used for the fabrication of microstructures (by two‐photon polymerization) that exhibit a dual‐photoreactive surface. By combining both functional photoresists into one scaffold, a dual functionalization pattern can be obtained by a single irradiation step in the presence of adequate reaction partners based on a self‐sorting mechanism. The versatility of the approach is shown by the dual patterning of halogenated and fluorescent markers as well as proteins. Furthermore, we introduce a new ToF–SIMS mode (“delayed extraction”) for the characterization of the obtained microstructures that combines high mass resolution with improved lateral resolution.  相似文献   

5.
A simple and versatile method for the modification of a broad spectrum of surfaces with thin polymer films through the thermally or photochemically induced generation of surface‐attached polymer networks is reported. The system is based on copolymers containing diazomalonate groups, which can be activated by heat or light. To this end, the copolymers are deposited from solution onto solid substrates by standard techniques of thin‐film deposition (spin coating, dip coating). Upon activation the diazomalonate group decomposes and forms a carbene, which induces C−H insertion crosslinking (CHic) reactions. In the course of this process network formation and covalent surface attachment occur at the same time. The crosslinking process proceeds very rapidly, especially when the carbenes generated in the activation process cannot undergo Wolff‐rearrangement. The presented system can be used for the generation of a wide range of polymer layers and microstructures on a broad spectrum of surfaces.  相似文献   

6.
The potential to improve mechanical, structural, and mechanochemical properties of charge‐functionalized poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA)‐based hybrid cryogels is investigated. The simple and versatile synthesis of hybrid cryogels with high strength and toughness using cationic DMAEMA and ionic comonomer 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid has been proposed via in situ free‐radical crosslinking (cryo)polymerization by which the properties of virgin polymer can be modulated to required applications by incorporation of inorganic filler kaolin (KLN). Two factors affecting swelling and elasticity of hybrid gels (referred as PDA/KLNm), KLN content and gel preparation temperature, are studied. The optimum KLN concentration for desired swelling and modulus of elasticity is determined as 0.80% (w/v). Effective crosslinking density of hybrid hydrogels increases with KLN addition and this dependence is expressed by a quadratic polynomial as a function of KLN concentration. The results show that obtained hybrid gels with multiresponsive properties could be regarded as “smart materials” in sensing and actuation applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1758–1778  相似文献   

7.
A new approach is developed to fabricate highly oriented mono‐domain LCE nano/microstructures through micro‐molding in capillaries. Gratings and microwires as two typical examples are fabricated and characterized by polarizing optical microscopy, optical microscopy, and scanning electron microscopy. The gratings with precisely controlled sizes and smooth surface are obtained by filling the channels with a nematic monomer mixture followed by the photo‐crosslinking. After peeling off the gratings from the substrate, the free‐standing microwires are obtained. A uniform orientation of the mesogenic units is observed for the molds with channel width less than 20 μm. Reversible thermomechanical effect is demonstrated by using the microwires obtained through this approach.  相似文献   

8.
We describe single‐chain polymer nanoparticles (SCNPs) possessing intramolecular dynamic covalent crosslinks that can transform into polymer films through a molecular recognition‐mediated crosslinking process. The SCNPs utilise molecular recognition with surface‐immobilised proteins to concentrate upon a substrate, bringing the SCNPs into close spatial proximity with one another and allowing their dynamic covalent crosslinkers to undergo intra‐ to interpolymer chain crosslinking leading to the formation of polymeric film. SCNPs must possess both the capacity for specific molecular recognition and a dynamic nature to their intramolecular crosslinkers to form polymer films, and an investigation of the initial phase of film formation indicates it proceeds from features which form upon the surface then grow predominantly in the xy directions. This approach to polymer film formation presents a potential method to “wrap” surfaces displaying molecular recognition motifs—which could potentially include viral, cellular and bacterial surfaces or artificial surfaces displaying multivalent recognition motifs—within a layer of polymer film.  相似文献   

9.
A simple flame treatment method was explored to construct micro/nanostructures on a surface and then fabricate a biomimetic superhydrophobic surface at a relatively low cost. SiO2‐containing polydimethylsiloxane (PDMS) was used as a substrate. The PDMS replicas with various micropatterned surfaces were fabricated using grass leaf, sand paper, and PET sheet with parallel groove geometry as templates via PDMS replica molding. The PDMS replica surfaces with micron structures and the surface of a flat PDMS sheet as a control sample were further treated by flame. The fabricated surfaces were characterized by scanning electron microscopy and water contact angle measurements. The effect of surface microstructures on the transparency of PDMS was also investigated. The studies indicate that the fine nanoscale structures can be produced on the surfaces of PDMS replicas and a flat PDMS sheet by a flame treatment method, and that the hierarchical surface roughness can be adjusted and controlled by varying the flame treatment time. The flame‐treated surfaces of PDMS replicas and a flat PDMS sheet possess superhydrophobicity and an ultra‐low sliding angle reaching a limiting value of 1°, and the anisotropic wettability of the PDMS replica surface with oriented microgroove structures can be greatly suppressed via flame treatment. The visible light transmittance of the flame‐treated flat PDMS surface decreases with prolonged flame treatment times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The fabrication of patterned microstructures in poly(dimethylsiloxane) (PDMS) is a prerequisite for soft lithography. Herein, curvilinear surface relief microstructures in PDMS are fabricated through a simple three‐stage approach combining microcontact printing (μCP), selective surface wetting/dewetting and replica molding (REM). First, using an original PDMS stamp (first‐generation stamp) with linear relief features, a chemical pattern on gold substrate is generated by μCP using hexadecanethiol (HDT) as an ink. Then, by a dip‐coating process, an ordered polyethylene glycol (PEG) polymer‐dot array forms on the HDT‐patterned gold substrate. Finally, based on a REM process, the PEG‐dot array on gold substrate is used to fabricate a second‐generation PDMS stamp with microcavity array, and the second‐generation PDMS stamp is used to generate third‐generation PDMS stamp with microbump array. These fabricated new‐generation stamps are utilized in μCP and in micromolding in capillaries (MIMIC), allowing the generation of surface micropatterns which cannot be obtained using the original PDMS stamp. The method will be useful in producing new‐generation PDMS stamps, especially for those who want to use soft lithography in their studies but have no access to the microfabrication facilities.  相似文献   

11.
Dr. Heinz Mustroph 《Chemphyschem》2016,17(17):2616-2629
The concept of a potential‐energy surface (PES) is central to our understanding of spectroscopy, photochemistry, and chemical kinetics. However, the terminology used in connection with the basic approximations is variously, and somewhat confusingly, represented with such phrases as “adiabatic”, “Born–Oppenheimer”, or “Born–Oppenheimer adiabatic” approximation. Concerning the closely relevant and important Franck–Condon principle (FCP), the IUPAC definition differentiates between a classical and quantum mechanical formulation. Consequently, in many publications we find terms such as “Franck–Condon (excited) state”, or a vertical transition to the “Franck–Condon point” with the “Franck–Condon geometry” that relaxes to the excited‐state equilibrium geometry. The Born–Oppenheimer approximation and the “classical” model of the Franck–Condon principle are typical examples of misused terms and lax interpretations of the original theories. In this essay, we revisit the original publications of pioneers of the PES concept and the FCP to help stimulate a lively discussion and clearer thinking around these important concepts.  相似文献   

12.
A special class of engineered copolymers, called ionomers, comprising both electrically neutral repeating units and a fraction of ionized units was melt blended to weather resistant acrylonitrile/styrene/acrylate (ASA) terpolymer for improved electrical conductivity, heat sealing ability, direct adhesion to several polymers, glass and metals without affecting the aesthetics and colorability of ASA. The similar chemical nature of one of the components of each blended materials viz. acrylate rubber in ASA and acrylic acid of Na‐ionomer in addition to the presence of ionic crosslinking within Na‐ionomer, polar acrylonitrile group in ASA affects chain dynamics as compared to neat polymers. In this context, dynamic rheological properties, DMA properties, creep behavior and DSC of the newly developed ASA/Na‐ionomer blends were analyzed. Based on Na‐ionomer content, the blend system either forms “mushroom” or “brush” type conformation and formation of ionic crosslinking in “brush regime” leads to three tiers Caylay tree conformation. The different chain topology resulted into characteristic loss modulous (G″) curve during stress relaxation process. The chain conformation as well as ionic crosslinking and ion–dipole interaction between the blend components also affected DSC endotherm peak and glass transition temperature. The tan δ peak temperature from DMA also revealed the similar observation. The creep compliance of the blends was dependent on Na‐ionomer content and with temperature. The Findley model analysis of creep compliance suggested that the creep compliance was depended on Na‐ionomer content and ionic crosslinking controlled the creep. The findings can be utilized to design weather resistant smart polymer using suitable filler system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
用毛细微模塑法在玻璃基片上组装了聚苯乙烯微球紧密的有序阵列.扫描电镜观察了组装后的微球排列.结果表明,在毛细通道的出口端,聚苯乙烯的微球堆积得紧密有序.毛细通道的尺寸,环境温度和聚合物微球乳液的浓度是毛细微模塑法的主要影响因素.  相似文献   

14.
For chiral gels and related applications, one of the critical issues is how to modulate the stereoselective interaction between the gel and the chiral guest precisely, as well as how to translate this information into the macroscopic properties of materials. Herein, we report that this process can also be modulated by nonchiral solvents, which can induce a chiral‐interaction reversion for organogel formation. This process could be observed through the clear difference in gelation speed and the morphology of the resulting self‐assembly. This chiral effect was successfully applied in the selective separation of quinine enantiomers and imparts “smart” merits to the gel materials.  相似文献   

15.
Nanostructured porous silicon (PSi) is an attractive platform for the design of biosensors because of its high sensitivity and selectivity towards various biological targets. Its use for biosensing applications, however, is compromised as a result of interfacial interactions with biological molecules that may accumulate on their surfaces and degrade their performance. We describe a new hybrid system comprising an oxidized PSi (PSiO2) nanostructure and antifouling (anti‐adsorption), light‐triggered pre‐polymers that promote crosslinking and surface anchoring to Si walls. The incorporation of the pre‐polymers allowed the production of a thick hydrogel layer on the inorganic nanostructure. Coating completely prevents fouling of proteins on the surface without compromising biosensor performance in terms of sensitivity. The strategy developed here provides a convenient means to combine two distinct features of crosslinking and organic–inorganic hybrid fabrication in a “one‐pot” process. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Replication of microstructures from a mold onto a curved surface is difficult. The conformal contact between the mold and the substrate has to be ensured. The present study proposes an innovative mechanism, which employs an electromagnetic disk to provide magnetic force and a PDMS flexible mold with a layer compounded magnetic powder. This mechanism provides not only the gradual contact from center to edge to avoid air entrapment but also conformal contact between the mold and the substrate during the imprinting operation. A system based on this electromagnetic soft imprinting technology has been implemented, and imprinting to replicate microstructures from the mold onto a curved surface has been carried out. The results reveal that the PDMS magnetic mold and the electromagnetic disk‐controlled magnetic force can successfully perform the imprinting and accurately replicate the microstructures onto the large‐area, curved surface glass. The PDMS flexible magnetic mold incorporated with the magnetic disk can be employed to achieve the conformal contact between the mold and the substrate. In addition, due to the low surface free energy of the PDMS, the de‐molding without sticking can be easily accomplished. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
研究了镁合金的约束刻蚀微加工方法. 通过对电解过程中电极表面氢离子浓度变化以及刻蚀体系对镁合金的腐蚀速率的测量与分析, 对一些可能有刻蚀作用的刻蚀体系进行了研究. 选用亚硝酸钠作为产生刻蚀剂(硝酸)的前驱体、氢氧化钠作为捕捉剂、少量硅酸钠作为缓蚀剂的约束刻蚀体系, 使用具有规整三维微立方体点阵结构的模板, 在金属镁表面加工出具有与模板互补特性的点阵微结构, 复制加工的分辨率为亚微米级. 并对刻蚀过程机理进行了探讨与分析.  相似文献   

18.
This Communication describes the use of patterned elastomeric stamps to mold, release, and stack hydrogels into three-dimensional microstructures. Molding of gels against stamps derivatized by a hexa(ethylene glycol)-terminated self-assembled monolayer or by an adsorbed monolayer of bovine serum albumin allowed the application of several soft lithographic techniques (replica molding, microtransfer molding, and micromolding in capillaries) to the microfabrication of gels. We describe procedures to generate coplanar or bilayered composites of gels.  相似文献   

19.
The fine microstructure on the natural green bristlegrass leaf of Setaria viridis (L.) Beauv, which exhibits a contact angle (CA) of 155°±2° and a rolling angle (RA) of 79°±2°, is carefully observed. Based on the understanding of the underlying mechanisms for superhydrophobicity and moderate surface adhesion, an efficient replica molding strategy is proposed for mimicking the microstructures on green bristlegrass leaf surface to polypropylene (PP) surfaces. The bioinspired PP replica with dual‐level micropillars are molded by using the unitized template of steel Meshes A and B. Interestingly, the PP replica inherits both hydrophobicity and adhesion of the natural leaf. Furthermore, the PP replica can stabilize its hydrophobic state under a 980 Pa external pressure, which is attributed to the composite Cassie‐Wenzel mixed wetting state on the microstructured interface. The CA comparatively goes down and RA increases, resulting in superhydrophobic surface with moderate adhesion on the bioinspired surface. Hence, the microstructures and hydrophobicity are successfully replicated to the PP surface by only using the low cost, available and reliable steel meshes in the bioinspired replica molding process.  相似文献   

20.
Heterogeneous catalysis performed in the liquid phase is an important type of catalytic process which is rarely studied in situ. Using microfocus X‐ray fluorescence and X‐ray diffraction computed tomography (μ‐XRF‐CT, μ‐XRD‐CT) in combination with X‐ray absorption near‐edge spectroscopy (XANES), we have determined the active state of a Mo‐promoted Pt/C catalyst (NanoSelect) for the liquid‐phase hydrogenation of nitrobenzene under standard operating conditions. First, μ‐XRF‐CT and μ‐XRD‐CT reveal the active state of Pt catalyst to be reduced, noncrystalline, and evenly dispersed across the support surface. Second, imaging of the Pt and Mo distribution reveals they are highly stable on the support and not prone to leaching during the reaction. This study demonstrates the ability of chemical computed tomography to image the nature and spatial distribution of catalysts under reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号