首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Formula emulsion systems are used as enteral, sports and health products. In some formulas addition of hydrolysed protein is necessary to guarantee ease of digestion and hypoallergenicity. In the low fat emulsion model an increase in the content of lecithin (phospholipid mixture) was required, in consideration of the advice of the Food and Nutrition Board (USA) for choline supplementation. The individual and interactive effects of whey protein isolate (WPI) or hydrolysate (WPH) (3.7 and 4.9% w/w), unmodified deoiled or hydrolysed lecithin (0.48 or 0.7% w/w) and carbohydrate in the form of maltodextrin with dextrose equivalent (DE) 18.5 or glucose syrup with DE 34 (11% w/w) on the properties of formula emulsions with 4% v/w sunflower oil, were investigated using a full factorial design. The emulsions were characterised by particle size distribution, coalescence stability, creaming rate, and also surface protein and lecithin concentration. WPI-containing emulsions proved to be stable against coalescence and showed only little creaming after 1 and 7 days standing. There was a significant increase in the mean droplet size and a significant deterioration of coalescence and creaming stability when WPH instead of WPI was used as the protein source, due to the lower number of large peptides and lower surface activity of the WPH. Increasing the WPH concentration led to an increase in oil droplet size and further deterioration of the stability of the emulsions. The starch hydrolysate and lecithin also significantly influenced the emulsion properties. Their influence was less strong when the emulsion contained WPI. Under the conditions used WPH-based emulsions were more stable, in terms of creaming and coalescence, when a low level of protein was used in conjunction with hydrolysed lecithin and glucose syrup. Oil droplets in emulsions containing unmodified lecithin in either the continuous or disperse phase and WPH in the continuous phase were very sensitive to coalescence. The addition of starch hydrolysates (DE 18.5) induced intensive flocculation and phase separation in these emulsions.  相似文献   

2.
The influence of sodium dodecyl sulfate (SDS) on the flocculation of droplets in 20 wt.% soybean oil-in-water emulsions stabilized by whey protein isolate (WPI) was investigated by light scattering, rheology and creaming measurements. The SDS concentrations used were low enough to prevent depletion flocculation by surfactant micelles and extensive protein displacement. In the absence of SDS, emulsions were prone to droplet flocculation near the isoelectric point of the proteins (4<pH<6), but were stable at a higher and lower pH. Flocculation led to an increase in emulsion viscosity, pronounced shear thinning behavior and accelerated creaming. When the surfactant-to-protein molar ratio was increased from 0 to 10, the emulsion instability range shifted to lower pH values due to binding of the negatively charged SDS molecules to the droplets. Our results indicate that the physicochemical properties of protein-stabilized emulsions can be modified by utilizing surfactant–protein interactions.  相似文献   

3.
《Arabian Journal of Chemistry》2020,13(11):7829-7842
Carica papaya Linnaeus commonly known as papaya is widely grown in Malaysia as a herbaceous plant with phytochemicals for a variety of use, particularly in the medical field. The therapeutic medicinal way of treating dengue fever using papaya leave extract mainly involves consumption a raw concoction and is very distasteful. Therefore, a study was carried out to develop stable emulsion with an acceptable taste through a ternary phase diagram system (TPDS), which comprised virgin coconut oil (VCO), isolated whey protein (WPI) and Carica papaya leaves extract (CPLE). The TPDS was developed using Chemix Software version 3.6 to identify the existence of homogenous phase region. In the first phase, a total of 11 selected samples (named as A to K) with concentrations ranging from 20% to 30% (w/w) of WPI from the homogenous phase region were used to select the best emulsion selection. Sample I with a composition of 25, 30 and 45% (w/w) comprising VCO, WPI and CPLE was selected and considered as the best and stable emulsion. In the second phase, sample I (renamed as sample M) underwent an addition of + 2% (sample L) and reduction of −2% (sample N) VCO. Analysis was carried out such as emulsion stability test (creaming index), pH value, viscosity, color and storage stability (4, 28 and 45 °C). The control sample was CPLE without any VCO or WPI. Sensory evaluation was also conducted to handpick the best formulation favored by 30 panellists. The sensory evaluation was conducted on samples L, M, N and CPLE using 7-point hedonic scale for preference on color, viscosity, odor, bitterness and overall acceptance attributes. The results showed that centrifugation test exhibited a stable emulsion for all the three samples (p > 0.05) L, M and N. In fact, there were differences between all the samples (p < 0.05) for pH, viscosity, and coloration of L* and b* values. For the storage stability test, all formulations were stable at 4 °C and there were no creaming layer and color changes developed except for sample L which was considered unstable at 28 °C and 45 °C. As for sensory preference, the color and bitterness was considered similar as compared to control (p < 0.05) except viscosity, odour and overall acceptance. In conclusion, sample N with compositional concentrations of 23% (w/w) VCO, 32% (w/w) WPI and 45% (w/w) CPLE was considered the most acceptable emulsion as it did not develop immiscible creaming layer and color changes at 4 °C and 28 °C. Based on the selected formulation, at least 270 ml emulsion by taking 3 tablespoons daily for 3 days in a row is needed as recommended by the Ministry of Health (MOH) in helping to increase the chances of curing dengue fever.  相似文献   

4.
The physical and rheological properties of oil in water model emulsion systems containing Iranian tragacanth gum (TG) (0.5, 1 g/100 ml emulsions), whey protein isolate (WPI) (2, 4 g/100 ml emulsions), and oleic acid (5, 10 ml/100 ml emulsions) were investigated for droplet-size distribution, creaming index, and rheological properties of emulsions. The shear-thinning behavior of all dispersions was modeled using power law, Cross, and Ellis models. The power law model described the flow behavior of dispersions for its lowest standard error (0.29) and highest determination coefficient (R2) (0.99). Rheological investigation showed that both loss (G″) and storage (G′) modules increased as gum and oil content increased. Delta degree was 0.1 and increased as frequency increased, indicating that liquid-like viscose behavior dominated solid-like elastic behavior. Droplet-size distribution was measured by light scattering and microscopic observations revealed a flocculated system. Gum, WPI, and oil contents decreased the emulsion creaming index with gum concentration having the greatest effect.  相似文献   

5.
W/O/W double emulsions (DEs) stabilized by charged soluble complexes of whey protein isolate (WPI) and modified pectins were investigated in relation to their stability and the release of two types of electrolytes, NaCl and sodium ascorbate.WPI alone cannot properly stabilize the DEs. The droplet size is relatively large (100 μm) and increases with time. However, addition of modified pectin to form a soluble complex with WPI significantly improved the stability.DEs prepared with two types of oils (medium chain triglycerides (MCT) and R(+)-limonene) were studied by measuring droplet size, creaming, viscosity, and electrolyte release. Irrespective of their very different oil phase nature, both emulsions were stable against coalescence, but R(+)-limonene formed smaller droplets (25 μm) than MCT (35 μm). The electrolyte release rate was significantly higher from the R(+)-limonene that formed DEs with much lower viscosity. R(+)-limonene-DE released 75% of the NaCl after 28 days, while MCT-DE released only 50%. NaCl was released more slowly than sodium ascorbate.Apparently, the release mechanism from R(+)-limonene-DE was found to be “thinning the outer interface and release of the entire inner droplets” while it seems that the release from MCT-DE was slower and “diffusion controlled”.DEs stabilized by WPI/C63 released 12% of the sodium ascorbate after 1 day in milk and remained stable for at least 8 days. However, DEs stabilized with only WPI released about 50% of the sodium ascorbate after 1 day, and phase separated after 8 days.  相似文献   

6.
Oil-in-water emulsions (60% oil (w/w)) were prepared using whey protein aggregates as the sole emulsifying agent. The effects of whey protein aggregate size (the diameter between 0.92 and 10.9?µm), the pH of emulsions (4–8.6) and storage time on physical properties, droplet size, and stability of emulsions were investigated. The results indicate that increment of whey protein aggregate size caused an increase in the firmness, droplet size, and viscosity of emulsions, and also a decrease in the emulsion creaming. The emulsion viscosity, firmness, and droplet size were reduced by increasing the emulsion pH; however, the creaming process was accelerated. Viscosity, creaming, and droplet size of emulsions were increased slightly during 21 days storage at 40°C.  相似文献   

7.
The effects of added unmodified amylopectin starch, modified amylopectin starch and amylose starch on the formation and properties of emulsions (4 wt.% corn oil) made with an extensively hydrolysed commercial whey protein (WPH) product under a range of conditions were examined. The rate of coalescence was calculated based on the changes in the droplet size of the emulsions during storage at 20 degrees C. The rates of creaming and coalescence in emulsions containing amylopectin starches were enhanced with increasing concentration of the starches during storage for up to 7 days. At a given starch concentration, the rate of coalescence was higher in the emulsions containing modified amylopectin starch than in those containing unmodified amylopectin starch, whereas it was lowest in the emulsions containing amylose starch. All emulsions containing unmodified and modified amylopectin starches showed flocculation of oil droplets by a depletion mechanism. However, flocculation was not observed in the emulsions containing amylose starch. The extent of flocculation was considered to correlate with the rate of coalescence of oil droplets. The different rates of coalescence could be explained on the basis of the strength of the depletion potential, which was dependent on the molecular weight and the radius of gyration of the starches. At high levels of starch addition (>1.5%), the rate of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase caused by the starch.  相似文献   

8.
Emulsions prepared with whey proteins, phospholipids and 10% of vegetable oil were used for a model typifying dressings, coffee whitener and balanced diets. For the present study, two whey proteins (partial heat-denatured whey protein concentrate (WPC) and undenatured whey protein isolate (WPI)) in combination with different phospholipids (hydrolysed and unmodified deoiled lecithin) were chosen to investigate the interactions between proteins, phospholipids and salt (sodium chloride) in such emulsion systems. Oil-in-water (o/w) emulsions (10 wt.% sunflower oil) containing various concentrations of commercial whey proteins (1-2%), phospholipids (0.39-0.78%) and salt (0.5-1.5%) were prepared using a laboratory high pressure homogeniser under various preparation conditions. Each emulsion was characterised by droplet size, creaming rate, flow behaviour and protein load. The dynamic surface activity of the whey proteins and lecithins at the oil-water interface was determined using the drop volume method. The properties of emulsions were significantly influenced by the content of whey protein. Higher protein levels improved the emulsion behaviour (smaller oil droplets and increased stability) independent of the protein or lecithin samples used. An increase of the protein content resulted in a lower tendency for oil droplet aggregation of emulsions with WPC to occur and emulsions tending towards a Newtonian flow behaviour. The emulsification temperature was especially important using the partial heat-denatured WPC in combination with the deoiled lecithin. A higher emulsification temperature (60 degrees C) promoted oil droplet aggregation, as well as an increased emulsion consistency. Emulsions with the WPC were significantly influenced by the NaCl content, as well as the protein-salt ratio. Increasing the NaCl content led to an increase of the droplet size, higher oil droplet aggregation, as well as to a higher creaming rate of the emulsions. An increase of the lecithin content from 0.39 to 0.78% in the emulsion system resulted in a small reduction of the single droplet size. This effect was more pronounced when using the hydrolysed lecithins.  相似文献   

9.
In this study the potential ability of food-grade particles (at the droplet interface) to enhance the oxidative stability was investigated. Sunflower oil-in-water emulsions (20%), stabilised solely by food-grade particles (Microcrystalline cellulose (MCC) and modified starch (MS)), were produced under different processing conditions and their physicochemical properties were studied over time. Data on droplet size, surface charge, creaming index and oxidative stability were obtained. Increasing the food-grade particle concentration from 0.1% to 2.5% was found to decrease droplet size, enhance the physical stability of emulsions and reduce the lipid oxidation rate due to the formation of a thicker interfacial layer around the oil droplets. It was further shown that, MCC particles were able to reduce the lipid oxidation rate more effectively than MS particles. This was attributed to their ability to scavenge free radicals, through their negative charge, and form thicker interfacial layers around oil droplets due to the particles size differences. The present study demonstrates that the manipulation of emulsions' interfacial microstructure, based on the formation of a thick interface around the oil droplets by food-grade particles (Pickering emulsions), is an effective approach to slow down lipid oxidation.  相似文献   

10.
Rice starch was cross-linked with epichlorohydrin (0.3%, w/w, on a dry starch basis) and oxidized with sodium hypochlorite (2.5% w/w), respectively. Two dual-modified rice starch samples (oxidized cross-linked rice starch and cross-linked oxidized rice starch) were obtained by the oxidation of cross-linked rice starch and the cross-linking of oxidized rice starch at the same level of reagents. The physicochemical properties of native rice starch, cross-linked rice starch and oxidized rice starch were also studied parallel with those of the two dual-modified rice starch samples using rapid visco analysis (RVA), differential scanning calorimetry (DSC), dynamic rheometry and scanning electron microscopy (SEM). It was found that the levels of cross-linking and oxidation used in this study did not cause any significant changes in the morphology of rice starch granules. Cross-linked oxidized starch showed lower swelling power (SP) and solubility, and higher paste clarity in comparison with native starch. Cross-linked oxidized rice starch also had the lowest tendency of retrogradation and highest ability to resistant to shear compared with native, cross-linked, oxidized and oxidized cross-linked rice starches. These results suggest that the undesirable properties in native, cross-linked and oxidized rice starch samples could be overcome through dual-modification.  相似文献   

11.
Poly(ethylene oxide) (PEO) is known for facilitating the electrospinning of biopolymer solutions, which are otherwise not electrospinnable. The objective of this study was to improve the understanding of the positive effects of PEO on the electrospinning of whey protein isolate (WPI) solutions under different pH conditions. Alterations in protein secondary structure and polymer solution properties (viscosity, conductivity, and dynamic surface tension), as induced by pH changes, significantly affected the electrospinning behavior of WPI/PEO (10% w/w: 0.4% w/w PEO) solutions. Acidic solutions resulted in smooth fibers (707 ± 105 nm) while neutral solutions produced spheres (2.0 ± 1.0 μm) linked with ultrafine fibers (138 ± 32 nm). In comparison, alkaline solutions produced fibers (191 ± 36 nm) that were embedded with spindle‐like beads (1.0 ± 0.5 μm). 13C NMR and FTIR spectroscopies showed that the increase in random coil and α‐helix secondary structures in WPI were the main contributors to the formation of bead‐less electrospun fibers. The electrospinning‐enabling properties of PEO on aqueous WPI solutions were attributed to physical chain entanglement between the two polymers, rather than specific polymer–polymer interactions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.  相似文献   

13.
The aim of this study was to prepare the inclusion complexes of citronella oil, citronellal or citronellol with β-cyclodextrin and evaluate their physicochemical properties using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). A kneading method was employed to prepare the inclusion complexes and weight ratios of each of the active substance to β-cyclodextrin were 1:1 (1:1 CPX) and 1:2 (1:2 CPX). For comparison purposes, physical mixtures of these active compounds and β-cyclodextrin were also prepared and investigated. Unlike the physical mixtures, the SEM technique revealed drastic changes in the shapes and morphologies of the particles for the inclusion complexes. Furthermore, the FTIR and DSC results seemed to reveal some interactions between the active substance and β-cyclodextrin. The o/w lotions, which contained 10% w/w citronella oil (normal citronella oil; 1:1 CPX or 1:2 CPX), were formulated using Cremophors as emulsifiers. With modified Franz diffusion cell and synthetic membrane, the release rates of citronella oil from the lotions containing the inclusion complexes were significantly lower than that from the prepared lotion containing normal citronella oil. The mosquito (Aedes aegypti) repellent efficacy of the lotions containing citronella oil, citronellal or citronellol (both normal and inclusion complexes) was further evaluated by human-bait technique. The highest mosquito repellent activity was observed in the formulation which contained citronella oil–β-cyclodextrin inclusion complex at weight ratio of 1:1.  相似文献   

14.
To expand industrial utilization of tigernut starch and meet the demand for industrial starch, the influence of dry heat treatment (130 °C for 2 h and 4 h, 7% moisture) on the functional properties and structure of tigernut starch alone and mixed with Chinese quince seed gum (1% w/w) was investigated. Modifying the starch significantly (p < 0.05) increased peak, trough and final viscosity, and reduced the swelling power and gelatinization enthalpy. In addition, the freeze–thaw stability and pseudoplastic flow were enhanced by this modification process. Microscopic and crystalline structure results indicate that dry heat treatment without gum destroys the surface and the internal crystals of the starch granules, but when gum was present, the granule becomes more resistant to dry-heating. Overall, the treatment with dry heat and the addition of Chinese quince seed gum improved the physicochemical properties of tigernut starch, in particular by increasing freeze–thaw stability and viscosity to expand the application of the starch in food industry.  相似文献   

15.
The effect of formulation parameters namely oil type, emulsifier type and concentration was assessed on various properties of the nanoemulsions. All nanoemulsions yielded droplets with a desirable size ranged from 38.5 to 127.9?nm. The findings showed that emulsifier type had significant effects on the physicochemical properties of emulsions. Emulsifier concentration had a negative correlation with droplet diameter, turbidity and positive correlation with polydispersity index, viscosity and creaming stability. Nanoemulsions prepared from pomegranate seed oil were different from that of two other oils in droplet size, viscosity, creaming and turbidity because of its higher intrinsic viscosity and degree of unsaturation.  相似文献   

16.
In order to determine how the physicochemical properties of starch foams depend on the type of the starch used in baking process, starch foams were prepared using native starch and selected starch derivatives. The morphology, the density, the water adsorption capacity, the impact strength, and the thermal properties were determined for foams made from native starch, pregelatinized starch, hydroxypropylated starch with different degrees of substitution (DS = 0.015–0.025 and DS = 0.1), low distarch phosphate, medium distarch phosphate, and two cationic starch types (DS = 0.027–0.029 and DS = 0.029–0.033). The modified starch foams exhibited a more expanded structure with thinner cell walls than the foam made from native starch. The density of the native starch was 0.21 g cm?3 , while the density of the modified starch foams was lower, in the range of 0.14–0.17 g cm?3 except for the starch foam made from medium distarch phosphate. The thermal and physicochemical properties of the foams made from the other starch derivatives were dependent on the functional groups and the degree of cross-linking. The foam made from medium distarch phosphate had a significantly higher density and impact strength that was accompanied by a somewhat lower water adsorptivity.  相似文献   

17.
Whipped foams (10%, w/v protein, pH 7.0) were prepared from commercially available samples of whey protein isolate (WPI) and egg white protein (EWP), and subsequently compared based on yield stress (τ0), overrun and drainage stability. Adsorption rates and interfacial rheological measurements at a model air/water interface were quantified via pendant drop tensiometry to better understand foaming differences among the ingredients. The highest τ0 and resistance to drainage were observed for standard EWP, followed by EWP with added 0.1% (w/w) sodium lauryl sulfate, and then WPI. Addition of 25% (w/w) sucrose increased τ0 and drainage resistance of the EWP-based ingredients, whereas it decreased τ0 of WPI foams and minimally affected their drainage rates. These differing sugar effects were reflected in the interfacial rheological measurements, as sucrose addition increased the dilatational elasticity for both EWP-based ingredients, while decreasing this parameter for WPI. Previously observed relationships between τ0 and interfacial rheology did not hold across the protein types; however, these measurements did effectively differentiate foaming behaviors within EWP-based ingredients and within WPI. Interfacial data was also collected for purified β-lactoglobulin (β-lg) and ovalbumin, the primary proteins of WPI and EWP, respectively. The addition of 25% (w/w) sucrose increased the dilatational elasticity for adsorbed layers of β-lg, while minimally affecting the interfacial rheology of adsorbed ovalbumin, in contrast to the response of WPI and EWP ingredients. These experiments underscore the importance of utilizing the same materials for interfacial measurements as used for foaming experiments, if one is to properly infer interfacial information/mechanisms and relate this information to bulk foaming measurements. The effects of protein concentration and measurement time on interfacial rheology were also considered as they relate to bulk foam properties. This data should be of practical assistance to those designing aerated food products, as it has not been previously reported that sucrose addition improves the foaming characteristics of EWP-based ingredients while negatively affecting the foaming behavior of WPI, as these types of protein isolates are common to the food industry.  相似文献   

18.
Carica papaya leaf has a potentially well-known therapeutic effect in accelerating human blood platelet counts against dengue fever and dengue haemorrhagic fever. However, consuming the extract was considered troublesome due to its bitter taste. The fresh papaya leaves were extracted into two types of preparation: a) Fresh Papaya Leaves Extract (FPL) and b) Papaya Leaves with Saponin Reduction Extract (PLSR). This was followed by the determination of the best edible O/W emulsion formulation of both different extracts with virgin coconut oil (VCO) and whey protein (WP) as surfactant. Through Ternary Phase Diagram (TPD), the optimum ratio (w/w) of FPL/PLSR: VCO: WP were 63: 16: 21 and 65: 16: 19 respectively. Both formulas were examined for their physicochemical properties including pH, creaming index (CI), contact angle and droplet size measurement. The human bronchial epithelium cell (BEAS-2B) was treated using both emulsions for 72 hrs of cell growth response (EC50). The result shows that both FPL and PLSR formulations were slightly acidic and exhibited stable emulsion with no creaming formation (CI) up to 24 hrs of storage (25 ℃). Next, FPL emulsion shows 3 times higher wettability and 4 times bigger nanoparticle size than PLSR. These properties can affect the emulsion absorptivity in the targeted cell microenvironment. Remarkably, the BEAS-2B cell viability (%) for each emulsion was relatively elevated within 24 hrs and increased to more than 100 % at 48 and 72 hrs of exposure. This might hugely represent its potential in repairing damaged blood vessels due to dengue haemorrhagic fever. Besides, the EC50 value also indicated low levels of concentration needed to exponentially increase cell growth and safe for dengue fever treatment. For that reason, the recommended effective dosage by the Ministry of Health (Malaysia) (MOH) for both FPL and PLSR emulsions is two tablespoons twice a day for three consecutive days of treatment (equally to the effective dosage of 102 g extract).  相似文献   

19.
There is an urgent global need to develop novel types of environmentally safe dispersing chemicals from renewable resources in order to reduce the environmental impact of oil spills. For this goal, cellulose, the most abundant natural polymeric source, is a promising green, nontoxic alternative that could replace the current synthetic surfactants. In this study, cellulose nanocrystals (CNC) synthesized using a deep eutectic solvent (DES) and two commercially available cellulose nanocrystals were used as marine diesel oil–water Pickering emulsion stabilizers. In particular, oil in water (o/w) emulsion formation and stability of emulsified oil during storing were addressed using a laser diffraction particle size analyzer, image analysis, and oil emulsion volume examination. The particle size of the o/w reference without CNCs after dispersing was over 50 µm and coalescence occurred only a few minutes after the emulsifying mixing procedure. All three investigated CNCs were effective stabilizers for the o/w system (oil droplets size under 10 µm) by preventing the oil droplet coalescence over time (6 weeks) and resulting in a stable creaming layer. The CNCs prepared using green DES systems boasted performance comparable to that of commercial CNCs, and they showed effectiveness at 0.1% dispersant dosage.  相似文献   

20.
The emulsifying behaviour of glyco-protein complexes of the non-ionic polysaccharide dextran (500 kDa) with whey protein isolate (WPI) have been investigated in systems containing (20 vol.% oil phase) medium-chain triglyceride oil, silicone oil, orange oil, and n-tetradecane under acidic and high electrolyte concentrations. Covalent coupling of protein to polysaccharide is achieved by dry heat treatment of protein+polysaccharide mixtures. Emulsions were made with WPI and whey protein isolate-dextran (WPI-DX) conjugate, and stability was followed by determining changes in average droplet size and extent of serum separation with time, with gum arabic (GA) chosen as reference emulsifier. The results show that the WPI-DX conjugate gives much better stability than the whey protein alone or GA under similar conditions. The improved emulsifying properties of WPI on complexing with dextran is probably due to the enhanced steric stabilization provided by the bulky hydrophilic polysaccharide moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号