首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2020,31(12):3015-3026
Multifunctional bismuth sulfide (Bi2S3) nanomaterials exhibit significant potential as nanomedicines for the diagnosis and treatment of cancer. These nanomaterials act as excellent photothermal agents and radiation sensitizers for the treatment of tumors, and they can also act as contrast agents for computed tomography (CT) imaging, photoacoustic imaging (PA), and other forms of imaging to provide real-time tumor monitoring and testing guidance. Compared with other nanomaterials, Bi2S3 nanomaterials can readily adapt to different applications by virtue of the fact that they can be easily functionalized. However, these nanomaterials have some limitations that cannot be ignored and need to be addressed, such as poor biocompatibility, toxicity, and low chemical stability. It is widely believed that appropriate functionalization of Bi2S3 nanomaterials could remedy such defects and significantly improve performance. This review summarizes the ways in which Bi2S3 nanomaterials can be functionalized and discusses their applications in cancer theranostics over the last few years, focusing particularly on imaging and therapy. We also discuss issues relating to how Bi2S3 nanomaterials can be analyzed, including how we might be able to use these systems to inhibit and treat tumors and how current limitations might be overcome to improve treatment efficacy. Finally, we hope to provide inspiration and guidance as to how we might create a more optimized multifunctional nano-system for the diagnosis and treatment of tumors.  相似文献   

2.
Non-invasive theranostics that integrate the advantages of multimodality imaging and therapeutics have great potential in the field of biomedicine. Herein, a new nanohybrid based on Bi2Se3-conjugated upconversion nanoparticles (UCNPs) has been successfully developed through a simple in situ growth strategy. Under 808 nm near-infrared laser irradiation, the UCNPs can emit bright visible light, whereas the Bi2Se3 nanomaterial exhibits efficient photothermal conversion capacity. Moreover, the as-synthesized UCNP–Bi2Se3 nanohybrid exhibits efficient cell upconversion luminescence (UCL), reasonable CT imaging, and admirable cancer cell ablation capacity, further emphasizing the efficiency of this strategy for simultaneous UCL imaging and photothermal therapy. The designed theranostic strategy guided by dual-modal imaging endowed with real-time dynamic monitoring, remote controllability, and non-invasiveness makes the UCNP–Bi2Se3 nanohybrid an ideal candidate for non-invasive multimodal imaging-guided photothermal therapy for the precise diagnosis and treatment of cancer.  相似文献   

3.
Gold nanorods (NRs) have plasmon‐resonant absorption and scattering in the near‐infrared (NIR) region, making them attractive probes for in vitro and in vivo imaging. In the cellular environment, NRs can provide scattering contrast for darkfield microscopy, or emit a strong two‐photon luminescence due to plasmon‐enhanced two‐photon absorption. NRs have also been employed in biomedical imaging modalities such as optical coherence tomography or photoacoustic tomography. Careful control over surface chemistry enhances the capacity of NRs as biological imaging agents by enabling cell‐specific targeting, and by increasing their dispersion stability and circulation lifetimes. NRs can also efficiently convert optical energy into heat, and inflict localized damage to tumor cells. Laser‐induced heating of NRs can disrupt cell membrane integrity and homeostasis, resulting in Ca2+ influx and the depolymerization of the intracellular actin network. The combination of plasmon‐resonant optical properties, intense local photothermal effects and robust surface chemistry render gold NRs as promising theragnostic agents.  相似文献   

4.
A facile, reproducible, and scalable method was explored to construct uniform Au@poly(acrylic acid) (PAA) Janus nanoparticles (JNPs). The as‐prepared JNPs were used as templates to preferentially grow a mesoporous silica (mSiO2) shell and Au branches separately modified with methoxy‐poly(ethylene glycol)‐thiol (PEG) to improve their stability, and lactobionic acid (LA) for tumor‐specific targeting. The obtained octopus‐type PEG‐Au‐PAA/mSiO2‐LA Janus NPs (PEG‐OJNP‐LA) possess pH and NIR dual‐responsive release properties. Moreover, DOX‐loaded PEG‐OJNP‐LA, upon 808 nm NIR light irradiation, exhibit obviously higher toxicity at the cellular and animal levels compared with chemotherapy or photothermal therapy alone, indicating the PEG‐OJNP‐LA could be utilized as a multifunctional nanoplatform for in vitro and in vivo actively‐targeted and chemo‐photothermal cancer therapy.  相似文献   

5.
Multimodal imaging and simultaneous therapy is highly desirable because it can provide complementary information from each imaging modality for accurate diagnosis and, at the same time, afford an imaging‐guided focused tumor therapy. In this study, indocyanine green (ICG), a near‐infrared (NIR) imaging agent and perfect NIR light absorber for laser‐mediated photothermal therapy, was successfully incorporated into superparamagnetic Fe3O4@mSiO2 core–shell nanoparticles to combine the merit of NIR/magnetic resonance (MR) bimodal imaging properties with NIR photothermal therapy. The resultant nanoparticles were homogenously coated with poly(allylamine hydrochloride) (PAH) to make the surface of the composite nanoparticles positively charged, which would enhance cellular uptake driven by electrostatic interactions between the positive surface of the nanoparticles and the negative surface of the cancer cell. A high biocompatibility of the achieved nanoparticles was demonstrated by using a cell cytotoxicity assay. Moreover, confocal laser scanning microscopy (CLSM) observations indicated excellent NIR fluorescent imaging properties of the ICG‐loaded nanoparticles. The relatively high r2 value (171.6 mM ?1 s?1) of the nanoparticles implies its excellent capability as a contrast agent for MRI. More importantly, the ICG‐loaded nanoparticles showed perfect NIR photothermal therapy properties, thus indicating their potential for simultaneous cancer diagnosis as highly effective NIR/MR bimodal imaging probes and for NIR photothermal therapy of cancerous cells.  相似文献   

6.
Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron–hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.

A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy (PTT/PDT) of hypoxic tumors in the NIR-II window.  相似文献   

7.
The stringent reaction conditions for an effective Fenton reaction (pH range of 3–4) hinders its application in cancer therapy. Therefore, how to improve the efficiency of the Fenton reaction in a tumor site has been the main obstacle in chemodynamic therapy (CDT). Herein, we report biocompatible one‐dimensional (1D) ferrous phosphide nanorods (FP NRs) with ultrasound (US)‐ and photothermal (PT)‐enhanced Fenton properties and excellent photothermal conversion efficiency (56.6 %) in the NIR II window, showing synergistic therapeutic properties. Additionally, the high photothermal conversion efficiency and excellent traverse relaxivity (277.79 mm ?1 s?1) of the FP NRs means they are excellent photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) agents. This is the first report on exploiting the response of metallic phosphides to NIR II laser (1064 nm) and ultrasound to improve the CDT effect with a high therapeutic effect and PA/MR imaging.  相似文献   

8.
Intrinsically integrating precise diagnosis, effective therapy, and self‐anti‐inflammatory action into a single nanoparticle is attractive for tumor treatment and future clinical application, but still remains a great challenge. In this study, bovine serum albumin–iridium oxide nanoparticles (BSA‐IrO2 NPs) with extraordinary photothermal conversion efficiency, good photocatalytic activity, and a high X‐ray absorption coefficient were prepared through one‐step biomineralization. The nanoparticles allow tumor phototherapy and simultaneous photoacoustic/thermal imaging and computed tomography. More importantly, BSA‐IrO2 NPs can also act as a catalase to protect normal cells against H2O2‐induced reactive oxygen pressure and inflammation while significantly enhancing photoacoustic imaging through microbubble‐based inertial cavitation. These remarkable features may open up the exploration iridium‐based nanomaterials in theranostics.  相似文献   

9.
There are many reports on long persistent phosphors (LPPs) applied in bioimaging. However, there are few reports on LPPs applied in photothermal therapy (PTT), and an integrated system with multiple functions of diagnosis and therapy. In this work, we fabricate effective multifunctional phosphors Zn3Ga2SnO8: Cr3+, Nd3+, Gd3+ with NIR persistent phosphorescence, photothermal response and magnetism. Such featured materials can act as NIR optical biolabels and magnetic resonance imaging (MRI) contrast agents for tracking the early cancer cells, but also as photothermal therapeutic agent for killing the cancer cells. This new multifunctional biomaterial is expected to open a new possibility of setting up an advanced imaging‐guided therapy system featuring a high resolution for bioimaging and low side effects for the photothermal ablation of tumors.  相似文献   

10.
Ag2Se quantum dots (QDs) with near‐infrared (NIR) fluorescence have been widely utilized in NIR fluorescence imaging in vivo because of their narrow bulk band gap and excellent biocompatibility. However, most of synthesis methods for Ag2Se QDs are expensive and the reactants are toxic. Herein, a new protein‐templated biomimetic synthesis approach is proposed for the preparation of Ag2Se QDs by employing bovine serum albumin (BSA) as a template and dispersant. The BSA‐templated Ag2Se QDs (Ag2Se@BSA QDs) showed NIR fluorescence with high fluorescence quantum yield (≈21.2 %), excellent biocompatibility and good dispersibility in different media. Moreover, the obtained Ag2Se@BSA QDs exhibited remarkable photothermal conversion (≈27.8 %), which could be used in photothermal therapy. As a model application in biomedicine, the Ag2Se@BSA QDs were used as “gatekeepers” to cap mesoporous silica nanoparticles (MSNs) by means of electrostatic interaction. By taking the advantages of NIR fluorescence and photothermal property of Ag2Se@BSA QDs, the obtained MSN‐DOX‐Ag2Se nanoparticles (MDA NPs) were employed as a nanoplatform for combined chemo‐photothermal therapy. Compared with free DOX and MDA NPs without NIR laser, the laser‐treated MDA NPs exhibited lower cell viability in vitro, implying that Ag2Se@BSA QDs are highly promising photothermal agents and the MDA NPs are potential carriers for chemo–photothermal therapy.  相似文献   

11.
Both therapy and diagnosis, theragnosis, are indispensable for personalized medicine. Gold nanoparticles (Au NPs) have photochemical properties and attenuate X-rays, which are useful for photothermal therapy and X-ray computed tomography (CT) imaging, respectively. Polyethylene glycol (PEG)-modified dendrimers (PEGylated dendrimers) have been used as drug carriers with prolonged blood circulation. In this study, Au NP-loaded PEGylated dendrimers were prepared as agents for photothermal therapy and CT imaging. Au NPs were grown in the PEGylated dendrimer by adding gold ions and reductants under various conditions to improve the properties. Both size and surface plasmon absorption of the Au NPs increased, dependent on the seeding growth conditions. Au NPs with near infrared absorption were also prepared by seeding growth from Au NP-loaded PEGylated dendrimers using formaldehyde. The Au NPs thus grown showed enhanced photothermogenic properties and CT intensities, enabling efficient photocytotoxicity and the enhancement of the blood pool in mice by CT imaging. Therefore, Au NP-loaded PEGylated dendrimers are a potential agent for theragnosis.  相似文献   

12.
The two‐dimensional (2D) vanadium carbide (V2C) MXene has shown great potential as a photothermal agent (PTA) for photothermal therapy (PTT). However, the use of V2C in PTT is limited by the harsh synthesis condition and low photothermal conversion efficiency (PTCE). Herein, we report a completely different green delamination method using algae extraction to intercalate and delaminate V2AlC to produce mass V2C nanosheets (NSs) with a high yield (90 %). The resulting V2C NSs demonstrated good structural integrity and remarkably high absorption in near infrared (NIR) region with a PTCE as high as 48 %. Systemic in vitro and in vivo studies demonstrate that the V2C NSs can serve as efficient PTA for photoacoustic (PA) and magnetic resonance imaging (MRI)‐guided PTT of cancer. This work provides a cost‐effective, environment‐friendly, and high‐yielding disassembly approach of MAX, opening a new avenue to develop MXenes with desirable properties for a myriad of applications.  相似文献   

13.
The versatile application of nanoparticles in integrating imaging and therapy has aroused extensive research interest in precision medicine. Of the various nanoparticles that have been studied, CuS has shown great potential in the construction of multifunctional agents, owing to its excellent photothermal heating properties. Herein, we report a facile one‐pot biomineralization approach for the preparation of versatile bovine‐serum‐albumin‐conjugated CuS/Gd2O3 hybrid nanoparticles (BSA?CuS/Gd2O3 HNPs), which simultaneously possessed strong longitudinal relaxivity, an outstanding photothermal effect, high drug‐loading capacity, and pH/temperature‐responsive drug release. The versatile nanoparticles were used for magnetic resonance imaging (MRI) and antitumor photothermal chemotherapy, both in vitro and in vivo. In vivo MRI showed that the BSA?CuS/Gd2O3 HNPs had a long circulation time and effective passive tumor‐uptake ability. More importantly, combined in vitro and in vivo therapy demonstrated that drug‐loaded BSA?CuS/Gd2O3 HNPs offered outstanding synergistic therapeutic efficacy for tumor inhibition.  相似文献   

14.
Photothermal therapy has attracted much interest for use in cancer treatment in recent years. In this study, Cu2Se nanoparticles as a novel photothermal agent modified by chitosan (CS‐Cu2SeNPs) were successfully synthesized through a facile route at room temperature. The as‐synthesized CS‐Cu2SeNPs exhibited good water solubility and significant stability. CS‐Cu2SeNPs can efficiently convert near‐infrared (NIR) light into heat and exhibit excellent thermostability. In vitro experiments showed that CS‐Cu2SeNPs had selective cellular uptake between cancer and normal cells and expressed clear anticancer activity on A375 and HeLa human cancer cells. In addition, the anticancer activity was increased to about 400 % by combination with a laser at 808 nm, which acted through induction of apoptosis with the involvement of intrinsic and extrinsic pathways. CS‐Cu2SeNPs irradiated with a laser effectively triggered the intracellular reactive oxygen species (ROS) overproduction that promoted cell apoptosis. Therefore, the developed CS‐Cu2SeNPs could be used as a novel phototherapeutic agent for the photothermal therapy of human cancers.  相似文献   

15.
Hypoxia, as a characteristic feature of solid tumor, can significantly adversely affect the outcomes of cancer radiotherapy (RT), photodynamic therapy, or chemotherapy. In this study, a strategy is developed to overcome tumor hypoxia‐induced radiotherapy tolerance. Specifically, a novel two‐dimensional Pd@Au bimetallic core–shell nanostructure (TPAN) was employed for the sustainable and robust production of O2 in long‐term via the catalysis of endogenous H2O2. Notably, the catalytic activity of TPAN could be enhanced via surface plasmon resonance (SPR) effect triggered by NIR‐II laser irradiation, to enhance the O2 production and thereby relieve tumor hypoxia. Thus, TPAN could enhance radiotherapy outcomes by three aspects: 1) NIR‐II laser triggered SPR enhanced the catalysis of TPAN to produce O2 for relieving tumor hypoxia; 2) high‐Z element effect arising from Au and Pd to capture X‐ray energy within the tumor; and 3) TPAN affording X‐ray, photoacoustic, and NIR‐II laser derived photothermal imaging, for precisely guiding cancer therapy, so as to reduce the side effects from irradiation.  相似文献   

16.
《Electroanalysis》2017,29(9):2027-2035
The ultra‐wide two dimensional Bi2S3 nanosheets (2D Bi2S3 Ns) as non‐toxic graphene‐like nanomaterials have been prepared through solvothermal decomposition of a single‐source precursor, Bi(S2CNEt2)3, in ethylenediamine media for 2 h in 180 °C. The morphology, structure, properties and catalytic activity of prepared 2D Bi2S3 Ns were characterized with XRD, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV‐Visible spectroscopy, cyclic voltammetry (CV), amperometry, electrochemical charge/discharge technique and electrochemical impedance spectroscopy (EIS). The SEM image showed the 2D Bi2S3 Ns with a thickness of 15±4 nm and lengths of several micrometers is synthesized. The UV−Vis spectrum of 2D Bi2S3 Ns showed high sensitivity to visible‐near infrared light with its direct energy band gap of ≈1.22 eV. These Bi2S3 Ns showed high electron transfer ability and good electrochemical behavior and also exhibited electro‐catalytic activity toward the reduction‐oxidation of hydrogen peroxide. It is found that Bi2S3 Ns could detect H2O2 at wide linear concentration range (50.0 μM–8.0 mM) with detection limit 8 μM, using amperometry as measuring technique. Also the synthesized Bi2S3 Ns exhibited excellent electrochemical H2 storage properties. As a result, based on above properties, the Bi2S3 Ns can be used as a valuable and useful nanomaterial for H2 storage, high‐energy batteries, electrocatalytic fields and electrochemical sensing.  相似文献   

17.
Bi2S3 single‐crystalline nanowires are synthesized through a hydrothermal method and then fabricated into single nanowire photodetectors. Due to the different contact barrier between the gold electrode and Bi2S3 nanowires, two kinds of devices with different electrical contacts are obtained and their photoresponsive properties are investigated. The non‐ohmic contact devices show larger photocurrent gains and shorter response times than those of ohmic contact devices. Furthermore, the influence of a focused laser on the barrier height between gold and Bi2S3 is explored in both kinds of devices and shows that laser illumination on the Au?Bi2S3 interface can greatly affect the barrier height in non‐ohmic contact devices, while keeping it intact in ohmic contact devices. A model based on the surface photovoltage effect is used to explain this phenomenon.  相似文献   

18.
This study reports the development of iron‐chelated semiconducting polycomplex nanoparticles (SPFeN) for photoacoustic (PA) imaging‐guided photothermal ferrotherapy of cancer. The hybrid polymeric nanoagent comprises a ferroptosis initiator (Fe3+) and an amphiphilic semiconducting polycomplex (SPC) serving as both the photothermal nanotransducer and iron ion chelator. By virtue of poly(ethylene glycol) (PEG) grafting and its small size, SPFeN accumulates in the tumor of living mice after systemic administration, which can be monitored by PA imaging. In the acidic tumor microenvironment, SPFeN generates hydroxyl radicals, leading to ferroptosis; meanwhile, under NIR laser irradiation, it generates localized heat to not only accelerate the Fenton reaction but also implement photothermal therapy. Such a combined photothermal ferrotherapeutic effect of SPFeN leads to minimized dosage of iron compared to previous studies and effectively inhibits the tumor growth in living mice, which is not possible for the controls.  相似文献   

19.
We have rationally designed a new theranostic agent by coating near‐infrared (NIR) light‐absorbing polypyrrole (PPY) with poly(acrylic acid) (PAA), in which PAA acts as a nanoreactor and template, followed by growing small fluorescent silica nanoparticles (fSiO2 NPs) inside the PAA networks, resulting in the formation of polypyrrole@polyacrylic acid/fluorescent mesoporous silica (PPY@PAA/fmSiO2) core–shell NPs. Meanwhile, DOX‐loaded PPY@PAA/fmSiO2 NPs as pH and NIR dual‐sensitive drug delivery vehicles were employed for fluorescence imaging and chemo‐photothermal synergetic therapy in vitro and in vivo. The results demonstrate that the PPY@PAA/fmSiO2 NPs show high in vivo tumor uptake by the enhanced permeability and retention (EPR) effect after intravenous injection as revealed by in vivo fluorescence imaging, which is very helpful for visualizing the location of the tumor. Moreover, the obtained NPs inhibit tumor growth (95.6 % of tumors were eliminated) because of the combination of chemo‐photothermal therapy, which offers a synergistically improved therapeutic outcome compared with the use of either therapy alone. Therefore, the present study provides new insights into developing NIR and pH‐stimuli responsive PPY‐based multifunctional platform for cancer theranostics.  相似文献   

20.
Melanoma is a primary reason of death from skin cancer and associated with high lethality. Photothermal therapy (PTT) has been developed into a powerful cancer treatment technique in recent years. Here, we created a low‐cost and high‐performance PTT agent, Ag@TiO2 NPs, which possesses a high photothermal conversion efficiency of ≈65 % and strong near‐infrared (NIR) absorption about 808 nm. Ag NPs were synthesized using a two‐step method and coated with TiO2 to obtain Ag@TiO2 NPs by a facile sol‐gel method. Because of the oxide, Ag@TiO2 NPs exhibit remarkable high photothermal conversion efficiencies and biocompatibility in vivo and in vitro. Cytotoxicity and therapeutic efficiency of photothermal cytotoxicity of Ag@TiO2 NPs were tested in B16‐F10 cells and C57BL/6J mice. Under light irradiation, the elevated temperature causes cell death in Ag NPs‐treated (100 μg mL?1) cells in vitro (both p<0.01). In the case of subcutaneous melanoma tumor model, Ag@TiO2 NPs (100 μg mL?1) were injected into the tumor and irradiated with a 808 nm laser of 2 W cm?2 for 1 minute. As a consequence, the tumor volume gradually decreased by NIR laser irradiation with only a single treatment. The results demonstrate that Ag@TiO2 NPs are biocompatible and an attractive photothermal agent for cutaneous melanoma by local delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号