首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction between a β‐diketiminato magnesium hydride and carbon monoxide results in the isolation of a dimeric cis‐enediolate species through the reductive coupling of two CO molecules. Under catalytic conditions with PhSiH3, an observable magnesium formyl species may be intercepted for the mild reductive cleavage of the CO triple bond.  相似文献   

2.
3.
4.
5.
《化学:亚洲杂志》2017,12(3):366-371
We report a one‐pot and eco‐friendly synthesis of carbon‐supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer–Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields.  相似文献   

6.
Non‐thermal plasma activation has been used to enable low‐temperature water‐gas shift over a Au/CeZrO4 catalyst. The activity obtained was comparable with that attained by heating the catalyst to 180 °C providing an opportunity for the hydrogen production to be obtained under conditions where the thermodynamic limitations are minimal. Using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), structural changes associated with the gold nanoparticles in the catalyst have been observed which are not found under thermal activation indicating a weakening of the Au−CO bond and a change in the mechanism of deactivation.  相似文献   

7.
The Fischer–Tropsch synthesis (FTS) is a structure‐sensitive exothermic reaction that enables catalytic transformation of syngas to high quality liquid fuels. Now, monolithic cobalt‐based heterogeneous catalysts were elaborated through a wet chemistry approach that allows control over nanocrystal shape and crystallographic phase, while at the same time enables heat management. Copper and nickel foams have been employed as supports for the epitaxial growth of hcp‐Co nanowires directly from a solution containing a coordination compound of cobalt and stabilizing ligands. The Co/Cufoam catalyst was tested for Fischer–Tropsch synthesis in a fixed‐bed reactor, showing stability and significantly superior activity and selectivity towards C5+ compared to a Co/SiO2‐Al2O3 reference catalyst under the same conditions.  相似文献   

8.
9.
This Essay is an account of the institutional and scientific development of the Max‐Planck‐Institut für Kohlenforschung in Mülheim an der Ruhr (Germany), which is the successor to the Kaiser‐Wilhelm‐Institut für Kohlenforschung founded in 1914. The Essay is divided into four main parts, corresponding to the four major periods which are closely associated with the respective Directors of the Institute from 1914 to 2014: 1) Franz Fischer; 2) Karl Ziegler; 3) Günther Wilke; and 4) the period beginning with Manfred T. Reetz, who established a directorate comprising five Directors of equal status, each heading a different research department under the banner of catalysis. Along with key historical events associated with the Institute, research highlights of the four periods are featured.  相似文献   

10.
Bifunctional Fischer–Tropsch (FT) catalysts that couple uniform‐sized Co nanoparticles for CO hydrogenation and mesoporous zeolites for hydrocracking/isomerization reactions were found to be promising for the direct production of gasoline‐range (C5–11) hydrocarbons from syngas. The Brønsted acidity results in hydrocracking/isomerization of the heavier hydrocarbons formed on Co nanoparticles, while the mesoporosity contributes to suppressing the formation of lighter (C1–4) hydrocarbons. The selectivity for C5–11 hydrocarbons could reach about 70 % with a ratio of isoparaffins to n‐paraffins of approximately 2.3 over this catalyst, and the former is markedly higher than the maximum value (ca. 45 %) expected from the Anderson–Schulz–Flory distribution. By using n‐hexadecane as a model compound, it was clarified that both the acidity and mesoporosity play key roles in controlling the hydrocracking reactions and thus contribute to the improved product selectivity in FT synthesis.  相似文献   

11.
12.
13.
Density functional theory has become a valuable tool to study surface catalysis. However, due to the scarcity of clean and reliable experimental data on surfaces, the theoretical methods employed to explore heterogeneous catalytic mechanisms are usually less well validated than those for gas‐phase reactions. We argue herein that gas‐phase reactions and the corresponding surface reactions are related through the Born–Haber cycle and computational catalysis on surfaces will be less meaningful if gas‐phase behavior cannot first be suitably determined. In this contribution, we have constructed a set of gas‐phase reactions relevant to the Fischer–Tropsch synthesis as a case study. With this set, we have tested the validity of the widely used PBE and B3LYP functionals and found that neither of them are capable of describing all kinds of gas‐phase reactions properly, such that some surface reactions may be biased falsely against the others. Significantly, XYG3, which is a double‐hybrid functional that includes Hartree–Fock‐like exchange and many‐body perturbation correlation effects, presents a significant improvement for all of the gas‐phase reactions, holding promise for further development for surface catalysis.  相似文献   

14.
15.
A state‐of‐the‐art operando spectroscopic technique is applied to Co/TiO2 catalysts, which account for nearly half of the world's transportation fuels produced by Fischer–Tropsch catalysis. This allows determination of, at a spatial resolution of approximately 50 nm, the interdependence of formed hydrocarbon species in the inorganic catalyst. Observed trends show intra‐ and interparticular heterogeneities previously believed not to occur in particles under 200 μm. These heterogeneities are strongly dependent on changes in H2/CO ratio, but also on changes thereby induced on the Co and Ti valence states. We have captured the genesis of an active FTS particle over its propagation to steady‐state operation, in which microgradients lead to the gradual saturation of the Co/TiO2 catalyst surface with long chain hydrocarbons (i.e., organic film formation).  相似文献   

16.
Reduced graphene oxide exhibits high activity as Fenton catalyst with HO. radical generation efficiency over 82 % and turnover numbers of 4540 and 15023 for phenol degradation and H2O2 consumption, respectively. These values compare favorably with those achieved with transition metals, showing the potential of carbocatalysts for the Fenton reaction.  相似文献   

17.
Fourier transform infrared spectroscopy (FTIR) was used to observe the photolysis and recombination of a new EPR‐silent CO‐inhibited form of α‐H195Q nitrogenase from Azotobacter vinelandii. Photolysis at 4 K reveals a strong negative IR difference band at $\tilde \nu $ =1938 cm?1, along with a weaker negative feature at 1911 cm?1. These bands and the associated chemical species have both been assigned the label “Hi‐3”. A positive band at $\tilde \nu $ =1921 cm?1 was assigned to the “Lo‐3” photoproduct. By using an isotopic mixture of 12C 16O and 13C 18O, we show that the Hi‐3 bands arise from coupling of two similar CO oscillators with one uncoupled frequency at approximately $\tilde \nu $ =1917 cm?1. Although in previous studies Lo‐3 was not observed to recombine, by extending the observation range to 200–240 K, we found that recombination to Hi‐3 does indeed occur, with an activation energy of approximately 6.5 kJ mol?1. The frequencies of the Hi‐3 bands suggest terminal CO ligation. This hypothesis was tested with DFT calculations on models with terminal CO ligands on Fe2 and Fe6 of the FeMo‐cofactor. An S=0 model with both CO ligands in exo positions predicts symmetric and asymmetric stretches at $\tilde \nu $ =1938 and 1909 cm?1, respectively, with relative band intensities of about 3.5:1, which is in good agreement with experiment. From the observed IR intensities, Hi‐3 was found to be present at a concentration about equal to that of the EPR‐active Hi‐1 species. The relevance of Hi‐3 to the nitrogenase catalytic mechanism and its recently discovered Fischer–Tropsch chemistry is discussed.  相似文献   

18.
The selectivity in the hydrogenation of acrolein over Fe3O4‐supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220–270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR‐reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle‐size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design.  相似文献   

19.
By simply changing the oxide support, the selectivity of a metal–oxide catalysts can be tuned. For the CO2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO2, ZrO2, and TiO2), replacing a TiO2 support by CeO2 or ZrO2 selectively strengthens the binding of C,O‐bound and O‐bound species at the PtCo–oxide interface, leading to a different product selectivity. These results reveal mechanistic insights into how the catalytic performance of metal–oxide catalysts can be fine‐tuned.  相似文献   

20.
Models of the Fischer–Tropsch reaction typically focus on two proposed mechanisms for the initial carbon monoxide dissociation: unassisted dissociation (carbide mechanism), and hydrogen‐assisted dissociation via an adsorbed oxymethylidene (HCO*) intermediate. Much evidence for hydrogen‐assisted dissociation comes from density functional theory calculations modeling ruthenium nanoparticle catalysts as infinite, periodic metal slabs. However, the generalized gradient approximations (GGAs) used in these calculations can make significant errors in reaction barrier heights. How these errors affect the predicted selectivity to unassisted vs. hydrogen‐assisted dissociation is not well understood. We address the problem by considering a different regime, applying GGA and beyond‐GGA approximations to CO dissociation on a “magic” nonmagnetic Ru12 cluster modeling supported nanoparticle catalysts. Both approximations concur that hydrogen‐assisted dissociation is facile on this cluster, providing additional support for its potential role in real catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号