首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The manganese‐catalyzed cyanation of inert C?H bonds was achieved within a heterobimetallic catalysis regime. The manganese(I) catalysis proved widely applicable and enabled C?H cyanations on indoles, pyrroles and thiophenes by facile C?H manganesation. The robustness of the manganese catalyst set the stage for the racemization‐free C?H cyanation of amino acids with excellent levels of positional and chemo selectivity by the new cyanating agent NCFS. Experimental and computational mechanistic studies provided strong support for a synergistic heterobimetallic activation mode, facilitating the key C?C formation.  相似文献   

2.
A strategy is reported in which traceless directing groups (TDGs) are used to promote the redox‐neutral MnI‐catalyzed regioselective synthesis of N‐heterocycles. Alkyne coupling partners bearing a traceless directing group, which serves as both the chelator and internal oxidant, were used to control the regioselectivity of the annulation reactions. This operationally simple approach is highly effective with previously challenging unsymmetrical alkyne systems, including unbiased dialkyl alkynes, with perfect regioselectivity. The simple conditions and the ability to carry out synthesis on a gram scale underscore the usefulness of this method. The application of this strategy in the concise synthesis of the bioactive compound PK11209 and the pharmaceutical moxaverine is also described.  相似文献   

3.
Manganese‐catalyzed C?H bond activation chemistry is emerging as a powerful and complementary method for molecular functionalization. A highly reactive seven‐membered MnI intermediate is detected and characterized that is effective for H‐transfer or reductive elimination to deliver alkenylated or pyridinium products, respectively. The two pathways are determined at MnI by judicious choice of an electron‐deficient 2‐pyrone substrate containing a 2‐pyridyl directing group, which undergoes regioselective C?H bond activation, serving as a valuable system for probing the mechanistic features of Mn C?H bond activation chemistry.  相似文献   

4.
C?H activation bears great potential for enabling sustainable molecular syntheses in a step‐ and atom‐economical manner, with major advances having been realized with precious 4d and 5d transition metals. In contrast, we employed earth abundant, nontoxic iron catalysts for versatile allene annulations through a unique C?H/N?H/C?O/C?H functionalization sequence. The powerful iron catalysis occurred under external‐oxidant‐free conditions even at room temperature, while detailed mechanistic studies revealed an unprecedented 1,4‐iron migration regime for facile C?H activations.  相似文献   

5.
Hydroarylation of bicyclic alkenes has been developed using a low‐valent ReI‐catalyzed, directing group‐assisted C?H bond activation strategy. The addition of sodium acetate significantly improves the reaction efficiency; moreover, bicyclic alkenes such as 7‐oxa and aza benzonorbornadienes worked efficiently under this reaction condition. Preliminary mechanistic studies suggest that, after the alkene insertion, the rhenacycle preferentially undergoes protonolysis rather than reductive elimination.  相似文献   

6.
A versatile manganese(I) catalyst was employed in C? H aminocarbonylation reactions of heteroarenes with aryl as well as with alkyl isocyanates using a removable directing group approach. Detailed experimental mechanistic studies were suggestive of an organometallic C? H manganesation step, followed by a rate‐determining migratory insertion.  相似文献   

7.
Chemoselective C?H arylations were accomplished through micellar catalysis by a versatile single‐component ruthenium catalyst. The strategy provided expedient access to C?H‐arylated ferrocenes with wide functional‐group tolerance and ample scope through weak chelation assistance. The sustainability of the C?H arylation was demonstrated by outstanding atom‐economy and recycling studies. Detailed computational studies provided support for a facile C?H activation through thioketone assistance.  相似文献   

8.
A RhIII complex featuring an electron‐deficient η5‐cyclopentadienyl ligand catalyzed an unusual annulation between alkynes and 2‐alkenyl anilides to form synthetically appealing 2‐substituted indolines. Formally, the process can be viewed as an allylic amination with concomitant hydrocarbonation of the alkyne. Mechanistic experiments indicate that this transformation involves an unusual rhodium migration with a concomitant 1,5‐H shift.  相似文献   

9.
《化学:亚洲杂志》2017,12(1):130-144
An efficient palladium(II)‐catalyzed intermolecular direct ortho ‐alkenylation and acetoxylation of phenols has been developed. The reaction proceeded via a seven‐membered cyclopalladated intermediate and showed complete regio‐ and diastereoselectivity. The approach also provided an efficient route for the synthesis of coumarins and benzofurans.  相似文献   

10.
Bioorthogonal C?H allylation with ample scope was accomplished through a versatile manganese(I)‐catalyzed C?H activation for the late‐stage diversification of structurally complex peptides. The unique robustness of the manganese(I) catalysis manifold was reflected by full tolerance of sensitive functional groups, such as iodides, esters, amides, and OH‐free hydroxy groups, thereby setting the stage for the racemization‐free synthesis of C?H fused peptide hybrids featuring steroids, drug molecules, natural products, nucleobases, and saccharides.  相似文献   

11.
A catalytic enantioselective method for the synthesis of chiral 1H‐isoindoles bearing quaternary stereogenic centers is reported. Powered by readily accessible phosphordiamidite ligands, the presented palladium(0)‐catalyzed C?H functionalization uses trifluoroacetimidoyl chlorides as electrophilic components. It delivers previously inaccessible perfluoroalkylated 1H‐isoindoles in high yields and enantioselectivities. The subsequent diastereoselective addition of nucleophiles provides access to densely substituted and sterically hindered isoindolines.  相似文献   

12.
Axial‐to‐central chirality transfer is an important strategy to construct chiral centers, where the axially chiral reagents are mostly limited to atropomerically stable ones. Reported herein is a RhIII‐catalyzed enantioselective spiroannulative synthesis of nitrones. The coupling proceeds via C?H arylation to give an atropomerically metastable biaryl, followed by intramolecular dearomative trapping under oxidative conditions with high degree of chirality transfer.  相似文献   

13.
Triazole assistance set the stage for a unified strategy for the iron‐catalyzed C?H allylation of arenes, heteroarenes, and alkenes with ample scope. The versatile catalyst also proved competent for site‐selective methylation, benzylation, and alkylation with challenging primary and secondary halides. Triazole‐assisted C?H activation proceeded chemo‐, site‐, and diastereo‐selectively, and the modular TAM directing group was readily removed in a traceless fashion under exceedingly mild reaction conditions.  相似文献   

14.
Asymmetric pallada‐electrocatalyzed C?H olefinations were achieved through the synergistic cooperation with transient directing groups. The electrochemical, atroposelective C?H activations were realized with high position‐, diastereo‐, and enantio‐control under mild reaction conditions to obtain highly enantiomerically‐enriched biaryls and fluorinated N?C axially chiral scaffolds. Our strategy provided expedient access to, among others, novel chiral BINOLs, dicarboxylic acids and helicenes of value to asymmetric catalysis. Mechanistic studies by experiments and computation provided key insights into the catalyst's mode of action.  相似文献   

15.
Palladium‐catalyzed regio‐ and diastereoselective C?H functionalization with bromoalkynes and electronically unbiased olefins is reported. The picolinamide directing group enables the formation of putative 5 and 6‐exo‐metallacycles as intermediates to afford monoalkynylated products in up to 91 % yield in a stereospecific fashion. The systematic study reveals that substrates with a wide range of substituents on the olefin and bromoalkyne coupling partners are tolerated. Chemoselective transformations were demonstrated for the obtained amides, olefins, and alkynes.  相似文献   

16.
Since 1987, stoichiometric cyclomanganation of ketones and subsequent reactions with olefins in the presence of either palladium salts or trimethylamine N‐oxide (Me3N+O?) have been reported, but the catalytic versions remain untouched so far. Herein, the first manganese‐catalyzed redox‐neutral C?H olefination of ketones with unactivated alkenes is described, and shows a distinct reactivity with its parent stoichimetric reactions. Remarkably, mechanistic experiments and DFT calculations uncovers a unique concerted bis‐metalation deprotonation (CBMD) mechanism of the Mn‐Zn‐enabled C?H bond activation.  相似文献   

17.
The first example of cobalt‐catalyzed oxidative C?H/C?H cross‐coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2?4 H2O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C?H bond activation pathway that the well‐described oxidative C?H/C?H cross‐coupling reactions between two heteroarenes typically undergo.  相似文献   

18.
A highly stereoselective three‐component C(sp2)?H bond addition across alkene and polarized π‐bonds is reported for which CoIII catalysis was shown to be much more effective than RhIII. The reaction proceeds at ambient temperature with both aryl and alkyl enones employed as efficient coupling partners. Moreover, the reaction exhibits extremely broad scope with respect to the aldehyde input; electron rich and poor aromatic, alkenyl, and branched and unbranched alkyl aldehydes all couple in good yield and with high diastereoselectivity. Multiple directing groups participate in this transformation, including pyrazole, pyridine, and imine functional groups. Both aromatic and alkenyl C(sp2)?H bonds undergo the three‐component addition cascade, and the alkenyl addition product can readily be converted into diastereomerically pure five‐membered lactones. Additionally, the first asymmetric reactions with CoIII‐catalyzed C?H functionalization are demonstrated with three‐component C?H bond addition cascades employing N‐tert‐butanesulfinyl imines. These examples represent the first transition metal catalyzed C?H bond additions to N‐tert‐butanesulfinyl imines, which are versatile and extensively used intermediates for the asymmetric synthesis of amines.  相似文献   

19.
Experimental and computational studies provide detailed insight into the selectivity‐ and reactivity‐controlling factors in bifurcated ruthenium‐catalyzed direct C?H arylations and dehydrogenative C?H/C?H functionalizations. Thorough investigations revealed the importance of arene‐ligand‐free complexes for the formation of biscyclometalated intermediates within a ruthenium(II/IV/II) mechanistic manifold.  相似文献   

20.
Activation of C?H bonds and their application in cross coupling chemistry has received a wider interest in recent years. The conventional strategy in cross coupling reaction involves the pre‐functionalization step of coupling reactants such as organic halides, pseudo‐halides and organometallic reagents. The C?H activation facilitates a simple and straight forward approach devoid of pre‐functionalization step. This approach also addresses the environmental and economical issues involved in several chemical reactions. In this account, we have reported C?H bond activation of small organic molecules, for example, formamide C?H bond can be activated and coupled with β‐dicarbonyl or 2‐carbonyl substituted phenols under oxidative conditions to yield carbamates using inexpensive copper catalysts. Phenyl carbamates were successfully synthesized in moderate to good yields by cross dehydrogenative coupling (CDC) of phenols with formamides using copper catalysts in presence of a ligand. We have also prepared unsymmetrical urea derivatives by oxidative cross coupling of formamides with amines using copper catalysts. Synthesis of N,N‐dimethyl substituted amides, 5‐substituted‐γ‐lactams and α‐acyloxy ethers was carried out from carboxylic acids using recyclable CuO nanoparticles. Copper nanoparticles afforded N‐aryl‐γ‐amino‐γ‐lactams by oxidative coupling of aromatic amines with 2‐pyrrolidinone. Reusable transition metal HT‐derived oxide catalyst was used for the synthesis of N,N‐dimethyl substituted amides by the oxidative cross‐coupling of carboxylic acids and substituted benzaldehydes. Overview of our work in this area is summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号