首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
The binary system Li2CO3–BaCO3 was studied by means of differential thermal analysis (DTA), thermogravimetry (TG) and X-ray phase analysis. The composition of carbonate and CO2 partial pressure influence on the thermal behavior of carbonate were examined. It was shown that lithium carbonate does not form the substitutional solid solution with barium carbonate, however the possible formation of diluted interstitial solid solutions is discussed. Above the melting temperature the mass loss is observed on TG curves. This loss is the result of both decomposition of lithium carbonate and evaporation of lithium in Li2CO3–BaCO3 system. Increase of CO2 concentration in surrounding gas atmosphere leads to slower decomposition of lithium carbonate and to increase the melting point. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Although a lithium metal anode has a high energy density compared with a carbon insertion anode, the poor rechargeability prevents the practical use of anode materials. A lithium electrode coated with Li2CO3 was prepared as a negative electrode to enhance cycleability through the control of the solid electrolyte interface (SEI) layer formation in Li secondary batteries. The electrochemical characteristics of the SEI layer were examined using chronopotentiometry (CP) and impedance spectroscopy. The Li2CO3-SEI layer prevents electrolyte decomposition reaction and has low interface resistance. In addition, the lithium ion diffusion in the SEI layer of the uncoated and the Li2CO3-coated electrode was evaluated using chronoamperometry (CA).  相似文献   

3.

This paper presents a non-aqueous Li-air battery model that considers the side reactions of lithium carbonate (Li2CO3) formation from both electrolyte decomposition and carbon dioxide (CO2) in the ambient air. The deposition and decomposition behaviors of discharge products, the voltage, and capacity evolutions during the cycling operation of the Li-air batteries are investigated. The deposition behavior analysis implies that the Li2CO3 generated by electrolyte decomposition is mainly distributed near the separator side, while it is dominantly generated by Li-O2/CO2 reaction near the air side. The formation of Li2CO3 by side reactions makes the Li-air batteries exhibit a peak discharge deposition inside the cathode. Moreover, Li2CO3 is difficult to decompose and gradually accumulates with cycles, especially near the air side. The severe accumulation of Li2CO3 near the air side significantly reduces the O2 diffusion into the electrode, which induces severe cycling performance decay of the Li-air batteries. According to the distribution and evolution of the deposition, three simple hierarchical cathode structures with high porosities near the air side are finally studied. The simulation results indicate that the increase of the local porosity near the air side substantially improves the cycling performance of the Li-air batteries.

  相似文献   

4.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2?, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li‐air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open‐air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high‐performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2?. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g?1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   

5.
High‐Ni layered oxides are promising next‐generation cathodes for lithium‐ion batteries owing to their high capacity and lower cost. However, as the Ni content increases over 70 %, they have a high dynamic affinity towards moisture and CO2 in ambient air, primarily reacting to form LiOH, Li2CO3, and LiHCO3 on the surface, which is commonly termed “residual lithium”. Air exposure occurs after synthesis as it is common practice to handle and store them under ambient conditions. The air exposure leads to significant performance losses, and hampers the electrode fabrication, impeding their practical viability. Herein, we show that substituting a small amount of Al for Ni in the crystal lattice notably improves the chemical stability against air by limiting the formation of LiOH, Li2CO3, LiHCO3, and NiO in the near‐surface region. The Al‐doped high‐Ni oxides display a high capacity retention with excellent rate capability and cycling stability after being exposed to air for 30 days.  相似文献   

6.
The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. Here we report the investigation of the passivation behavior of Li2O, Li2CO3, LiF and LiOH with the lithium salt LiFSI. We used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2CO3 are the most passivating of the SEI layers, followed by LiOH and Li2O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.  相似文献   

7.
The photoelectrochemical performance of lithium in a propylene carbonate solution of LiClO4 and in a mixture of propylene carbonate with dimethoxyethane, as well as in a LiAlCl4 solution in thionyl chloride, has been investigated. It has been established that when illuminating the electrodes under study, electronic photoemission takes place from the metal into a passivating film permanently existing on the lithium surface. The measurements were in part carried out with the Li electrode coated specially with a Li2O or Li2CO3 protecting film. Photoemission spectroscopy has been used as a tool for exploring the processes of both formation and change in the composition and properties of the passivating layers on the lithium electrodes. The results for the photoelectrochemistry of lithium have been compared with the analogous data obtained with electrodes made of gold and SnCd alloy in a propylene carbonate solution of LiClO4. In the two last cases, electronic photoemission from the metal into solution has been revealed. Received: 22 February 1999 / Accepted: 27 January 2000  相似文献   

8.
The rampant generation of lithium hydroxide and carbonate impurities, commonly known as residual lithium, is a practical obstacle to the mass-scale synthesis and handling of high-nickel (>90 %) layered oxides and their use as high-energy-density cathodes for lithium-ion batteries. Herein, we suggest a simple in situ method to control the residual lithium chemistry of a high-nickel lithium layered oxide, Li(Ni0.91Co0.06Mn0.03)O2 (NCM9163), with minimal side effects. Based on thermodynamic considerations of the preferred reactions, we systematically designed a synthesis process that preemptively converts residual Li2O (the origin of LiOH and Li2CO3) into a more stable compound by injecting reactive SO2 gas. The preformed lithium sulfate thin film significantly suppresses the generation of LiOH and Li2CO3 during both synthesis and storage, thereby mitigating slurry gelation and gas evolution and improving the cycle stability.  相似文献   

9.
Data on reactivities of α- and γ-Al2O3 finely dispersed powders in a melted carbonate eutectic (Li2CO3–Na2CO3–K2CO3)eut and carbonate-chloride mixture 0.72(Li2CO3–Na2CO3–K2CO3)eut–0.28NaCl were obtained. The methods of synchronous thermal and X-ray phase analyses and Raman spectroscopy confirmed that, in contrast to γ-Al2O3, α-Al2O3 does not chemically interact with the melted carbonate eutectic and carbonate-chloride mixture (Li2CO3–Na2CO3–K2CO3)eut–NaCl can be recommended as a thickening agent for a carbonate fuel cell.  相似文献   

10.
The lithium carbonate (Li2CO3)-coated carbon microbead composites (LCO/CMB-T) with the coating amount of 1.07, 2.88, and 7.39% are prepared by the impregnation process (IP). Three LCO/CMB-T samples are first used in the piperidinium-based hybrid electrolyte. It is found that the long charge–discharge cycles did not result in the decomposition or exfoliation of Li2CO3 coating. They can effectively prevent graphite electrode from exfoliation and suppress the graphite/electrolyte interfacial reaction. In three tested samples (IP-1.07%, IP-2.88% and IP-7.39% for short), the IP-2.88% sample showed the best cell performances and the highest capacity retention (82.9%) after 50 cycles. This work gives a new design method for the application of graphite materials in the ionic liquid-based electrolyte.  相似文献   

11.
Pressureless sintering of CaCO3 was carried out, with Li2CO3 (from 0.5 to 8 wt%) as an additive, under different pressures of CO2. Densification occurs between 600 and 700°C. Sintering above the eutectic temperature (T>662°C) leads to the decomposition of calcium carbonate and the materials become expanded. At 620° under 1 kPa of CO2, a relative density of 96% is reached. Li2CO3 enhances the densification process and grain growth of calcium carbonate. CO2 pressure slows down densification and grain growth kinetics. These results are explained by the influence of carbonate and calcium ion vacancies on the sintering mechanisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li-air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open-air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high-performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g−1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   

13.
Production waste of primary lithium batteries constitutes a considerable secondary lithium feedstock. Although the recycling of lithium batteries is a widely studied field of research, the metallic residues of non-rechargeable lithium battery production are disposed of as waste without further recycling. The risks of handling metallic Li on a large scale typically prevent the metal from being recycled. A way out of this situation is to handle Li in an aqueous solution, from where it can be isolated as Li2CO3. However, the challenge in hydrometallurgical treatment lies in the high energy release during dissolution and generation of H2. To reduce these process-related risks, the Li sheet metal punching residues underwent oxidative thermal treatment from 300 to 400 °C prior to dissolution in water. Converting Li metal to Li2O in this initial process step results in an energy release reduction of ∼70 %. The optimal oxidation conditions have been determined by experimental design varying three factors: temperature, Li metal sheet thickness, and residence time. With 96.9±2.6 % almost the entire Li amount is converted to Li2O, after 2.5 h treatment at 400 °C for a Li sheet thickness of 1.99 mm. Final precipitation with CO2 yields 85.5±3.0 % Li2CO3. Using pure Li sheets, the product Li2CO3 is obtained in battery-grade quality (>99.5 %). Non-precipitated Li is recirculated into the process on the stage of dissolving Li2O, thus avoiding loss of material.  相似文献   

14.
Lithium metal is an ideal anode for next‐generation lithium batteries owing to its very high theoretical specific capacity of 3860 mAh g?1 but very reactive upon exposure to ambient air, rendering it difficult to handle and transport. Air‐stable lithium spheres (ASLSs) were produced by electrochemical plating under CO2 atmosphere inside an advanced aberration‐corrected environmental transmission electron microscope. The ASLSs exhibit a core–shell structure with a Li core and a Li2CO3 shell. In ambient air, the ASLSs do not react with moisture and maintain their core–shell structures. Furthermore, the ASLSs can be used as anodes in lithium‐ion batteries, and they exhibit similar electrochemical behavior to metallic Li, indicating that the surface Li2CO3 layer is a good Li+ ion conductor. The air stability of the ASLSs is attributed to the surface Li2CO3 layer, which is barely soluble in water and does not react with oxygen and nitrogen in air at room temperature, thus passivating the Li core.  相似文献   

15.
A novel approach for the marking of deposited lithium on graphite anodes from large automotive lithium‐ion cells (≥6 Ah) is presented. Graphite anode samples were extracted from two different formats (cylindrical and pouch cells) of pristine and differently aged lithium‐ion cells. The samples present a variety of anodes with various states of lithium deposition (also known as plating). A chemical modification was performed to metallic lithium deposited on the anode surface due to previous plating with isopropanol (IPA). After this procedure an oxygenated species was detected by scanning electron microscopy (SEM), which later was confirmed as Li2CO3 by Fourier transform infrared spectroscopy (FTIR) and X‐ray powder diffraction (XRPD). A valuation of the covered area by Li2CO3 was carried out with an image analysis using energy‐dispersive X‐ray spectroscopy (EDX) and quantitative Rietveld refinement.  相似文献   

16.
Efficient Mg2+/Li+ separation is crucial to combating the lithium shortage worldwide, yet current nanofiltration membranes suffer from low efficacy and/or poor scalability, because desirable properties of membranes are entangled and there is a trade-off. This work reports a “tagged-modification” approach to tackle the challenge. A mixture of 3-bromo-trimethylpropan-1-aminium bromide (E1) and 3-aminopropyltrimethylazanium (E2) was designed to modify polyethylenimine – trimesoyl chloride (PEI-TMC) membranes. E1 and E2 reacted with the PEI and TMC, respectively, and thus, the membrane properties (hydrophilicity, pore sizes, charge) were untangled and intensified simultaneously. The permeance (34.3 L m−2 h−1 bar−1) and Mg2+/Li+ selectivity (23.2) of the modified membranes are about 4 times and 2 times higher than the pristine membrane, and they remain stable in a 30-days test. The permeance is the highest among all analogous nanofiltration membranes. The tagged-modification method enables the preparation of large-area membranes and modules that produce high-purity lithium carbonate (Li2CO3) from simulated brine.  相似文献   

17.
A small shielding effect on the hydrogen atoms of chiral carbons of β-cyclodextrin (β-CD) was detected by 1H nuclear magnetic resonance, but a large environmental change of the chiral carbon atoms at high concentration ratios of lithium carbonate (Li2CO3) to β-CD was observed by polarimetry in aqueous solution. These findings urged us to investigate whether different formation conditions of the molecule-ion system between Li2CO3 and β-CD in solid state were involved in different spectral performances. To answer the question, we prepared three adducts of Li2CO3 to β-CD, i.e., samples 1, 2, and 3, by magnetic stirring, solvothermal and grinding conditions, respectively. Powder X-ray diffraction and Fourier transformation infrared spectroscopy provided the information of formation of the three molecule-ion adducts. Besides, scanning electron microscope images provided different surface information of the three adducts. Further, significant spectral differences in thermal behavior of these adducts were found by thermogravimetry and derivative thermogravimetry.  相似文献   

18.
The influence of lithium oxide-doping on the thermal stability of Co3O4 was studied using DTA, TG, DTG and X-ray diffraction techniques. Pure and doped cobaltic oxide specimens were prepared by thermal decomposition of pure basic cobalt carbonate and the basic carbonate mixed with different proportions of LiOH, in air, at different temperatures between 500 and 1100°C.Pure Co3O4 was found to start partial decomposition when heated in air at 830°C yielding the CoO phase. The complete decomposition was effected by heating at 1000°C.Doping of Co3O4 with different proportions of Li2O was found to much increase its thermal stability. The temperatures at which the doped oxide samples started to undergo decomposition were increased to 865, 910 and 1050°C for 0.375, 0.75 and 3% Li2O-doped solids, respectively. The DTA revealed that the 1.5% Li2O-doped cobaltic oxide did not undergo any thermal decomposition till 1080°C. The X-ray investigation showed that the prolonged heating of 1.5 and 3% Li2O-doped solids at 1100°C for 36 h effected only a partial decomposition of Co3O4 into CoO. Heating of these solids at temperatures varying between 900 and 1100°C led also to the formation of a new lithium oxide cobaltic oxide phase, the composition of which has not yet been identified.The role of Li2O in increasing the thermal stability of Co3O4 was attributed to the substitution of some of its cobalt ions by Li+ ions, according to Verwey and De Boer's mechanism, leading to the transformation of some of the Co2+ into Co3+ ions thus increasing the oxidation state of the cobaltic oxide lattice.  相似文献   

19.
Lithium-ion batteries are commonly used for electrical energy storage in portable devices and are promising systems for large-scale energy storage. However, their application is still limited due to electrode degradation and stability issues. To enhance the fundamental understanding of electrode degradation, we report on the Raman spectroscopic characterization of LiCoO2 cathode materials of working Li-ion batteries. To facilitate the spectroscopic analysis of the solid electrolyte interface (SEI), we apply in situ surface-enhanced Raman spectroscopy under battery working conditions by using Au nanoparticles coated with a thin SiO2 layer (Au@SiO2). We observe a surface-enhanced Raman signal of Li2CO3 at 1090 cm−1 during electrochemical cycling as an intermediate. Its formation/decomposition highlights the role of Li2CO3 as a component of the SEI on LiCoO2 composite cathodes. Our results demonstrate the potential of Raman spectroscopy to monitor electrode/electrolyte interfaces of lithium-ion batteries under working conditions thus allowing relations between electrochemical performance and structural changes to be established.  相似文献   

20.
The formation of a passivation film (solid electrolyte interphase, SEI) at the surface of the negative electrode of full LiCoO2/graphite lithium‐ion cells using LiPF6 (1M ) in carbonate solvents as electrolyte was investigated by means of x‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The analyses were carried out at different potentials of the first and the fifth cycles, showing the potential‐dependent character of the surface‐film species formation. These species were mainly identified as Li2CO3 up to 3.8 V and LiF up to 4.2 V. This study shows the formation of the SEI during charging and its partial dissolution during discharge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号