首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of N‐heterocyclic carbenes in the chemistry of ionic liquids based on imidazolium salts has long been discussed. Here, we present experimental evidence that 1‐ethyl‐3‐methylimidazolium‐2‐ylidene (EMIm) can coexist with its protonated imidazolium cation (EMImH+) at low temperatures. If the vapor of the ionic liquid [EMImH+][AcO?] is trapped in solid argon or nitrogen at 9 K, only acetic acid (AcOH) and the carbene, but no ionic species, are found by IR spectroscopy. This indicates that during the evaporation of [EMImH+][AcO?] proton transfer occurs to form the neutral species. If the vapor of [EMImH+][AcO?] is trapped at 9 K as film in the absence of a host matrix, a solid consisting of EMImH+, EMIm, AcO?, and AcOH is formed. During warming to room temperature the proton transfer in the solid to form back the IL [EMImH+][AcO?] can be monitored by IR spectroscopy. This clearly demonstrates that evaporation and condensation of the IL [EMImH+][AcO?] results in a double proton transfer, and the carbene EMIm is only metastable even at low temperatures.  相似文献   

2.
Two anilinosalen and a mixed phenol‐anilinosalen ligands involving sterically hindered anilines moieties were synthesized. Their nickel(II) complexes 1 , 2 , and 3 were prepared and characterized. They could be readily one‐electron oxidized (E1/2=?0.30, ?0.26 and 0.10 V vs. Fc+/Fc, respectively) into anilinyl radicals species [ 1]+ , [ 2]+ , and [ 3]+ , respectively. The radical complexes are extremely stable and were isolated as single crystals. X‐ray crystallographic structures reveal that the changes in bond length resulting from oxidation do not exceed 0.02 Å within the ligand framework in the symmetrical [ 1]+ and [ 2]+ . No quinoid bond pattern was present. In contrast, larger structural rearrangements were evidenced for the unsymmetrical [ 3]+ , with shortening of one Cortho? Cmeta bond. Radical species [ 1]+ and [ 2]+ exhibit a strong absorption band at around 6000 cm?1 (class III mixed valence compounds). This band is significantly less intense than [ 3]+ , consistent with a rather localized anilinyl radical character, and thus a classification of this species as class II mixed‐valence compound. Magnetic and electronic properties, as well as structural parameters, have been computed by DFT methods.  相似文献   

3.
1,3,7,8‐Tetraphenyl‐4,8‐dihydro‐1H‐imidazolo[4,5g][1,2,4]benzotriazin‐4‐yl ( 5 ), 8‐(4‐bromophenyl)‐1,3,7‐triphenyl‐4,8‐dihydro‐1H‐imidazolo[4,5g][1,2,4]benzotriazin‐4‐yl ( 6 ), and 8‐(4‐methoxyphenyl)‐1,3,7‐triphenyl‐4,8‐dihydro‐1H‐imidazolo[4,5g][1,2,4]benzotriazin‐4‐yl ( 7 ) were characterized by using X‐ray diffraction crystallography, variable‐temperature magnetic susceptibility studies, and DFT calculations. Radicals 5 – 7 pack in 1 D π stacks made of radical pairs with alternate short and long interplanar distances. The magnetic susceptibility (χ vs. T) of radicals 5 and 6 exhibit broad maxima at (50±2) and (50±4) K, respectively, and are interpreted in terms of an alternating antiferromagnetic Heisenberg linear chain model with average exchange‐interaction values of J=?31.3 and ?35.4 cm?1 (gsolid=2.0030 and 2.0028) and an alternation parameter a=0.15 and 0.38 for 5 and 6 , respectively. However, radical 7 forms 1 D columns of radical pairs with alternating distances; one of the interplanar distances is significantly longer than the other, which decreases the magnetic dimensionality and leads to discrete dimers with a ferromagnetic exchange interaction between the radicals (2J=23.6 cm?1, 2zJ′=?2.8 cm?1, gsolid=2.0028). Magnetic exchange‐coupling interactions in 1,2,4‐benzotriazinyl radicals are sensitive to the degree of slippage and inter‐radical separation, and such subtle changes in structure alter the fine balance between ferro‐ and antiferromagnetic interactions.  相似文献   

4.
Quasielastic neutron scattering is used to probe the microscopic diffusion dynamics of the hydrogen‐bearing cations of two different silver complex‐derived room‐temperature ionic liquids, [Ag(propylamine)2+][Tf2N?] (Tf=trifluoromethanesulfonyl) and [Ag(1‐pentene)+][Tf2N?]. In the temperature range from 300 to 340 K, analysis of the scattering momentum transfer dependence of the data provides evidence for three distinct diffusion components. The slowest component describes the long‐range cationic translational diffusion. A possible link between the microscopic diffusion parameters and the structural features of the cations comprising these two ionic liquids is discussed.  相似文献   

5.
A combination of electrospray ionization (ESI), multistage, and high-resolution mass spectrometry experiments are used to examine the gas-phase fragmentation reactions of radical cations of cysteine containing di- and tripeptides. Two different chemical methods were used to form initial populations of radical cations in which the radical sites were located at different positions: (1) sulfur-centered cysteinyl radicals via bond homolysis of protonated S-nitrosocysteine containing peptides; and (2) α-carbon backbone-centered radicals via Siu’s sequence of reactions (J. Am. Chem. Soc. 2008, 130, 7862). Comparison of the fragmentation reactions of these regiospecifically generated radicals suggests that hydrogen atom transfer (HAT) between the α C-H of adjacent residues and the cysteinyl radical can occur. In addition, using accurate mass measurements, deuterium labeling, and comparison with an authentic sample, a novel loss of part of the N-terminal cysteine residue was shown to give rise to the protonated, truncated N-formyl peptide (an even-electron xn ion). DFT calculations were performed on the radical cation [GCG].+ to examine: the relative stabilities of isomers with different radical and protonation sites; the barriers associated with radical migration between four possible radical sites, [G.CG]+, [GC.G]+, [GCG.]+, and [GC(S.)G]+; and for dissociation from these sites to yield b2-type ions.  相似文献   

6.
A series of half‐sandwich rhodium‐based metallamacrocycles with tetra‐ and hexanuclearities have been synthesized. They are assembled by linking the deprotonated 2,4‐diacetyl‐5‐hydroxy‐5‐methyl‐3‐(3‐pyridinyl)cyclohexanone (HL) ligand in the presence of counteranions. When the counteranion was the tetrahedral BF4? ion, tetranuclear metallamacrocycle [(Cp*RhL)4][BF4]4 ( 1 d ) was formed. However, the larger OTf?, PF6?, and SbF6? counterions favored the formation of hexanuclear metallamacrocycles [(Cp*RhL)6?2OTf][OTf]4 ( 1 a ), [(Cp*RhL)6?2PF6][PF6]4 ( 1 b ), and [(Cp*RhL)6?2SbF6][SbF6]4 ? 6CH3CN ( 1 c ) when the reactions were performed under the same conditions. Single‐crystal X‐ray analysis indicated that, in the solid state, two counteranions were encapsulated in each belt‐like host molecule of hexanuclear metallamacrocycles 1 a , b , and c . Based on the results of 1H NMR analysis in methanol, the nuclearities of 1 a – c and the two encapsulated anions in each molecular cavity were maintained in solution. In addition, tetranuclear metallamacrocycle 1 d was converted into the hexanuclear metallamacrocycles 1 a′ , b , and c after addition of the appropriate anion as its [NBu4]+ salt. The compound 1 a′ was characterized by single‐crystal X‐ray diffraction to have the formula [(Cp*RhL)6?2OTf][BF4]4 ? 2M eOH ? 2H2O. From the interconversion of the hexanuclear metallamacrocycles, we have concluded that the hexanuclear belt‐like host in 1 a – c has an clear selectivity for larger anions, in the sequence SbF6?≈PF6?>OTf?>BF4?>Cl?.  相似文献   

7.
Long‐chain ferulic acid esters, such as eicosyl ferulate ( 1 ), show a complex and analytically valuable fragmentation behavior under negative ion electrospay collision‐induced dissociation ((?)‐ESI‐CID) mass spectrometry, as studied by use of a high‐resolution (Orbitrap) mass spectrometer. In a strong contrast to the very simple fragmentation of the [M + H]+ ion, which is discussed briefly, the deprotonated molecule, [M – H]?, exhibits a rich secondary fragmentation chemistry. It first loses a methyl radical (MS2) and the ortho‐quinoid [M – H – Me]‐? radical anion thus formed then dissociates by loss of an extended series of neutral radicals, CnH2n + 1? (n = 0–16) from the long alkyl chain, in competition with the expulsion of CO and CO2 (MS3). The further fragmentation (MS4) of the [M – H – Me – C3H7]? ion, discussed as an example, and the highly specific losses of alkyl radicals from the [M – H – Me – CO]‐? and [M – H – Me – CO2]‐? ions provide some mechanistic and structural insights.  相似文献   

8.
Quantum chemical calculations at the MP2/aug‐cc‐pVTZ and CCSD(T)/aug‐cc‐pVTZ levels have been carried out for the title compounds. The electronic structures were analyzed with a variety of charge and energy partitioning methods. All molecules possess linear equilibrium structures with D∞h symmetry. The total bond dissociation energies (BDEs) of the strongly bonded halogen anions [XHX]? and [XAuX]? decrease from [FHF]? to [IHI]? and from [FAuF]? to [IAuI]?. The BDEs of the noble gas compounds [NgHNg]+ and [NgAuNg]+ become larger for the heavier atoms. The central hydrogen and gold atoms carry partial positive charges in the cations and even in the anions, except for [IAuI]?, in which case the gold atom has a small negative charge of ?0.03 e. The molecular electrostatic potentials reveal that the regions of the most positive or negative charges may not agree with the partial charges of the atoms, because the spatial distribution of the electronic charge needs to be considered. The bonding analysis with the QTAIM method suggests a significant covalent character for the hydrogen bonds to the noble gas atoms in [NgHNg]+ and to the halogen atoms in [XHX]?. The covalent character of the bonding in the gold systems [NgAuNg]+ and [XAuX]? is smaller than in the hydrogen compound. The energy decomposition analysis suggests that the lighter hydrogen systems possess dative bonds X?→H+←X? or Ng→H+←Ng while the heavier homologues exhibit electron sharing through two‐electron, three‐center bonds. Dative bonds X?→Au+←X? and Ng→Au+←Ng are also diagnosed for the lighter gold systems, but the heavier compounds possess electron‐shared bonds.  相似文献   

9.
Salts that contain radical cations of benzidine (BZ), 3,3′,5,5′‐tetramethylbenzidine (TMB), 2,2′,6,6′‐tetraisopropylbenzidine (TPB), and 4,4′‐terphenyldiamine (DATP) have been isolated with weakly coordinating anions [Al(ORF)4]? (ORF=OC(CF3)3) or SbF6?. They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of benzidine or its alkyl‐substituted derivatives in CH2Cl2. The salts were characterized by UV absorption and EPR spectroscopy as well as by their single‐crystal X‐ray structures. Variable‐temperature UV/Vis absorption spectra of BZ . +[Al(ORF)4]? and TMB . +[Al(ORF)4]? in acetonitrile indicate an equilibrium between monomeric free radical cations and a radical‐cation dimer. In contrast, the absorption spectrum of TPB . +SbF6? in acetonitrile indicates that the oxidation of TPB only resulted in a monomeric radical cation. Single‐crystal X‐ray diffraction studies show that in the solid state BZ and its methylation derivative (TMB) form radical‐cation π dimers upon oxidation, whereas that modified with isopropyl groups (TPB) becomes a monomeric free radical cation. By increasing the chain length, π stacks of π dimers are obtained for the radical cation of DATP. The single‐crystal conductivity measurements show that monomerized or π‐dimerized radicals (BZ . +, TMB . +, and TPB . +) are nonconductive, whereas the π‐stacked radical (DATP . +) is conductive. A conduction mechanism between chains through π stacks is proposed.  相似文献   

10.
The title compounds, poly­[[[bis(2‐methoxy­ethyl) ether]­lithium(I)]‐di‐μ3‐tri­fluoro­methanesulfonato‐lithium(I)], [Li2(CF3SO3)2(C6H14O3)]n, and poly­[[[bis(2‐methoxy­ethyl) ether]­lithium(I)]‐di‐μ3‐tri­fluoro­acetato‐dilithium(I)‐μ3‐tri­fluoro­acetato], [Li3(C2F3O2)3(C6H14O3)]n, consist of one‐dimensional polymer chains. Both structures contain five‐coordinate Li+ cations coordinated by a tridentate diglyme [bis(2‐methoxy­ethyl) ether] mol­ecule and two O atoms, each from separate anions. In both structures, the [Li(diglyme)X2]? (X is CF3SO3 or CF3CO2) fragments are further connected by other Li+ cations and anions, creating one‐dimensional chains. These connecting Li+ cations are coordinated by four separate anions in both compounds. The CF3SO3? and CF3CO2? anions, however, adopt different forms of cation coordination, resulting in differences in the connectivity of the structures and solvate stoichiometries.  相似文献   

11.
2,5‐Diferrocenyl‐1‐Ar‐1H‐phospholes 3 a – e (Ar=phenyl ( a ), ferrocenyl ( b ), mesityl ( c ), 2,4,6‐triphenylphenyl ( d ), and 2,4,6‐tri‐tert‐butylphenyl ( e )) have been prepared by reactions of ArPH2 ( 1 a – e ) with 1,4‐diferrocenyl butadiyne. Compounds 3 b – e have been structurally characterized by single‐crystal XRD analysis. Application of the sterically demanding 2,4,6‐tri‐tert‐butylphenyl group led to an increased flattening of the pyramidal phosphorus environment. The ferrocenyl units could be oxidized separately, with redox separations of 265 ( 3 b ), 295 ( 3 c ), 340 ( 3 d ), and 315 mV ( 3 e ) in [NnBu4][B(C6F5)4]; these values indicate substantial thermodynamic stability of the mixed‐valence radical cations. Monocationic [ 3 b ]+–[ 3 e ]+ show intervalence charge‐transfer absorptions between 4650 and 5050 cm?1 of moderate intensity and half‐height bandwidth. Compounds 3 c – e with bulky, electron‐rich substituents reveal a significant increase in electronic interactions compared with less demanding groups in 3 a and 3 b .  相似文献   

12.
A ditopic ion‐pair receptor ( 1 ), which has tunable cation‐ and anion‐binding sites, has been synthesized and characterized. Spectroscopic analyses provide support for the conclusion that receptor 1 binds fluoride and chloride anions strongly and forms stable 1:1 complexes ([ 1? F]? and [ 1? Cl]?) with appropriately chosen salts of these anions in acetonitrile. When the anion complexes of 1 were treated with alkali metal ions (Li+, Na+, K+, Cs+, as their perchlorate salts), ion‐dependent interactions were observed that were found to depend on both the choice of added cation and the initially complexed anion. In the case of [ 1? F]?, no appreciable interaction with the K+ ion was seen. On the other hand, when this complex was treated with Li+ or Na+ ions, decomplexation of the bound fluoride anion was observed. In contrast to what was seen with Li+, Na+, K+, treating [ 1?F ]? with Cs+ ions gave rise to a stable, host‐separated ion‐pair complex, [F ?1? Cs], which contains the Cs+ ion bound in the cup‐like portion of the calix[4]pyrrole. Different complexation behavior was seen in the case of the chloride complex, [ 1? Cl]?. Here, no appreciable interaction was observed with Na+ or K+. In contrast, treating with Li+ produces a tight ion‐pair complex, [ 1? Li ? Cl], in which the cation is bound to the crown moiety. In analogy to what was seen for [ 1? F]?, treatment of [ 1? Cl]? with Cs+ ions gives rise to a host‐separated ion‐pair complex, [Cl ?1? Cs], in which the cation is bound to the cup of the calix[4]pyrrole. As inferred from liposomal model membrane transport studies, system 1 can act as an effective carrier for several chloride anion salts of Group 1 cations, operating through both symport (chloride+cation co‐transport) and antiport (nitrate‐for‐chloride exchange) mechanisms. This transport behavior stands in contrast to what is seen for simple octamethylcalix[4]pyrrole, which acts as an effective carrier for cesium chloride but does not operates through a nitrate‐for‐chloride anion exchange mechanism.  相似文献   

13.
We have used model tripeptides GXW (with X being one of the amino acid residues glycine (G), alanine (A), leucine (L), phenylalanine (F), glutamic acid (E), histidine (H), lysine (K), or arginine (R)) to study the effects of the basicity of the amino acid residue on the radical migrations and dissociations of odd‐electron molecular peptide radical cations M.+ in the gas phase. Low‐energy collision‐induced dissociation (CID) experiments revealed that the interconvertibility of the isomers [G.XW]+ (radical centered on the N‐terminal α‐carbon atom) and [GXW].+ (radical centered on the π system of the indolyl ring) generally increased upon increasing the proton affinity of residue X. When X was arginine, the most basic amino acid, the two isomers were fully interconvertible and produced almost identical CID spectra despite the different locations of their initial radical sites. The presence of the very basic arginine residue allowed radical migrations to proceed readily among the [G.RW]+ and [GRW].+ isomers prior to their dissociations. Density functional theory calculations revealed that the energy barriers for isomerizations among the α‐carbon‐centered radical [G.RW]+, the π‐centered radical [GRW].+, and the β‐carbon‐centered radical [GRWβ.]+ (ca. 32–36 kcal mol−1) were comparable with those for their dissociations (ca. 32–34 kcal mol−1). The arginine residue in these GRW radical cations tightly sequesters the proton, thereby resulting in minimal changes in the chemical environment during the radical migrations, in contrast to the situation for the analogous GGW system, in which the proton is inefficiently stabilized during the course of radical migration.  相似文献   

14.
We present three Mg–formate frameworks, incorporating three different ammoniums: [NH4][Mg(HCOO)3] ( 1 ), [CH3CH2NH3][Mg(HCOO)3] ( 2 ) and [NH3(CH2)4NH3][Mg2(HCOO)6] ( 3 ). They display structural phase transitions accompanied by prominent dielectric anomalies and anisotropic and negative thermal expansion. The temperature‐dependent structures, covering the whole temperature region in which the phase transitions occur, reveal detailed structural changes, and structure–property relationships are established. Compound 1 is a chiral Mg–formate framework with the NH4+ cations located in the channels. Above 255 K, the NH4+ cation vibrates quickly between two positions of shallow energy minima. Below 255 K, the cations undergo two steps of freezing of their vibrations, caused by the different inner profiles of the channels, producing non‐compensated antipolarization. These lead to significant negative thermal expansion and a relaxor‐like dielectric response. In perovskite 2 , the orthorhombic phase below 374 K possesses ordered CH3CH2NH3+ cations in the cubic cavities of the Mg–formate framework. Above 374 K, the structure becomes trigonal, with trigonally disordered cations, and above 426 K, another phase transition occurs and the cation changes to a two‐fold disordered state. The two transitions are accompanied by prominent dielectric anomalies and negative and positive thermal expansion, contributing to the large regulation of the framework coupled the order–disorder transition of CH3CH2NH3+. For niccolite 3 , the gradually enhanced flipping movement of the middle ethylene of [NH3(CH2)4NH3]2+ in the elongated framework cavity finally leads to the phase transition with a critical temperature of 412 K, and the trigonally disordered cations and relevant framework change, providing the basis for the very strong dielectric dispersion, high dielectric constant (comparable to inorganic oxides), and large negative thermal expansion. The spontaneous polarizations for the low‐temperature polar phases are 1.15, 3.43 and 1.51 μC cm?2 for 1 , 2 and 3 , respectively, as estimated by the shifts of the cations related to the anionic frameworks. Thermal and variable‐temperature powder X‐ray diffraction studies confirm the phase transitions, and the materials are all found to be thermally stable up to 470 K.  相似文献   

15.
Abstract

ESR study on the primary radicals obtained by decomposition of azo-compounds showed that primary radicals with electron donating substituents were transformed to the corresponding cations in the presence of electron acceptors such as ph2I+PF? 6. Accordingly, propagating radicals are transformed to the corresponding cations in the polymerization of p-methoxy-styrene (MOS), n-butyl vinyl ether (BVE), and N-vinylcarbazole (VCZ) with azoinitiators such as AIBN in the presence of electron acceptors such as Ph2I+PF? 6. In the case of BVE, the polymer formation was caused by cationic species produced by the transformation of the initiating radical. The polymerizations of MOS and VCZ were ascribed to the transformation of the growing radical to the corresponding cation during the propagation step which was classified as the radical/cation transformation polymerization. Block copolymers of MOS/cyclohexene oxide (CHO) and VCZ/CHO were effectively prepared by the radical/cation transformation polymerization of the appropriate monomers in the presence of AIBN, electron acceptor and CHO. The formation of block copolymers was characterized by turbidimetry, thin-layer chromatography, and solubility tests.  相似文献   

16.
Aromatic β-hydroxyoximes undergo unusual fragmentation reactions as protonated or cationized species, as radical cations, or as (M - H)? ions, As protonated species, they expel OH ’ from the oxime functionality in violation of the even electron rule. Parallel eliminations of alkyl radicals follow OH’ loss when the aromatic ring is substituted with an alkyl chain. Alkyl radical losses appear to be characteristic of radical cations that can isomerize to ions in which the alkyl chain bears a radical site and the charged site is the conjugate acid of a basic functionality (e.g., oxime or imine). Evidence for the mechanisms was found in the ion chemistry of oxime and imine radical cations. The imine reference compounds were conveniently generated by fast atom bombardment-induced reduction of oximes, removing the requirement for using conventional chemical synthesis. Protonated imines and the (M - H)? ions of oximes fragment extensively via charge-remote processes to eliminate the elements of alkanes. This chemistry is not shared by the protonated oximes.  相似文献   

17.
Gold nanoparticles (Au‐NPs) were reproducibly obtained by thermal, photolytic, or microwave‐assisted decomposition/reduction under argon from Au(CO)Cl or KAuCl4 in the presence of n‐butylimidazol dispersed in the ionic liquids (ILs) BMIm+BF4?, BMIm+OTf?, or BtMA+NTf2? (BMIm+=n‐butylmethylimidazolium, BtMA+=n‐butyltrimethylammonium, OTf?=?O3SCF3, NTf2?=?N(O2SCF3)2). The ultra small and uniform nanoparticles of about 1–2 nm diameter were produced in BMIm+BF4? and increased in size with the molecular volume of the ionic liquid anion used in BMIm+OTf? and BtMA+NTf2?. Under argon the Au‐NP/IL dispersion is stable without any additional stabilizers or capping molecules. From the ionic liquids, the gold nanoparticles can be functionalized with organic thiol ligands, transferred, and stabilized in different polar and nonpolar organic solvents. Au‐NPs can also be brought onto and stabilized by interaction with a polytetrafluoroethylene (PTFE, Teflon) surface. Density functional theory (DFT) calculations favor interactions between IL anions instead of IL cations. This suggests a Au???F interaction and anionic Aun stabilization in fluorine‐containing ILs. The 19F NMR signal in BMIm+BF4? shows a small Au‐NP concentration‐dependent shift. Characterization of the dispersed and deposited gold nanoparticles was done by transmission electron microscopy (TEM/HRTEM), transmission electron diffraction (TED), dynamic light scattering (DLS), UV/Vis absorbance spectroscopy, scanning electron microscopy (SEM), electron spin resonance (ESR), and electron probe micro analyses (EPM, SEM/EDX).  相似文献   

18.
Treatment of [Ir(bpa)(cod)]+ complex [ 1 ]+ with a strong base (e.g., tBuO?) led to unexpected double deprotonation to form the anionic [Ir(bpa?2H)(cod)]? species [ 3 ]?, via the mono‐deprotonated neutral amido complex [Ir(bpa?H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal–chelate ring may explain the favourable double deprotonation. The rhodium analogue [ 4 ]? was prepared in situ. The new species [M(bpa?2H)(cod)]? (M=Rh, Ir) are best described as two‐electron reduced analogues of the cationic imine complexes [MI(cod)(Py‐CH2‐N?CH‐Py)]+. One‐electron oxidation of [ 3 ]? and [ 4 ]? produced the ligand radical complexes [ 3 ]. and [ 4 ].. Oxygenation of [ 3 ]? with O2 gave the neutral carboxamido complex [Ir(cod)(py‐CH2N‐CO‐py)] via the ligand radical complex [ 3 ]. as a detectable intermediate.  相似文献   

19.
The preparation of a series of crown ether ligated alkali metal (M=K, Rb, Cs) germyl derivatives M(crown ether)nGeH3 through the hydrolysis of the respective tris(trimethylsilyl)germanides is reported. Depending on the alkali metal and the crown ether diameter, the hydrides display either contact molecules or separated ions in the solid state, providing a unique structural insight into the geometry of the obscure GeH3? ion. Germyl derivatives displaying M? Ge bonds in the solid state are of the general formula [M([18]crown‐6)(thf)GeH3] with M=K ( 1 ) and M=Rb ( 4 ). The compounds display an unexpected geometry with two of the GeH3 hydrogen atoms closely approaching the metal center, resulting in a partially inverted structure. Interestingly, the lone pair at germanium is not pointed towards the alkali metal, rather two of the three hydrides are approaching the alkali metal center to display M? H interactions. Separated ions display alkali metal cations bound to two crown ethers in a sandwich‐type arrangement and non‐coordinated GeH3? ions to afford complexes of the type [M(crown ether)2][GeH3] with M=K, crown ether=[15]crown‐5 ( 2 ); M=K, crown ether=[12]crown‐4 ( 3 ); and M=Cs, crown ether=[18]crown‐6 ( 5 ). The highly reactive germyl derivatives were characterized by using X‐ray crystallography, 1H and 13C NMR, and IR spectroscopy. Density functional theory (DFT) and second‐order Møller–Plesset perturbation theory (MP2) calculations were performed to analyze the geometry of the GeH3? ion in the contact molecules 1 and 4 .  相似文献   

20.
The luminescent tungsten–alkylidyne metalloligand [WCl(≡C‐4,4′‐C6H4CC‐py)(dppe)2] ( 1 ; dppe=1,2‐bis(diphenylphosphino)ethane) and the zinc–tetraarylporphyrins ZnTPP and ZnTPClP (TPP=tetraphenylporphyrin, TPClP=tetra(p‐chlorophenyl)porphyrin) self‐assemble in fluorobenzene solution to form the dyads ZnTPP( 1 ) and ZnTPClP( 1 ), in which the metalloligand is axially coordinated to the porphyrin. Excitation of the porphyrin‐centered S1 excited states of these dyads initiates intramolecular energy‐transfer (ZnPor→ 1 ) and electron‐transfer ( 1 →ZnPor) processes, which together efficiently quench the S1 state (~90 %). Transient‐absorption spectroscopy and an associated kinetic analysis reveal that the net product of the energy‐transfer process is the 3[dπ*] state of coordinated 1 , which is formed by S11[dπ*] singlet–singlet (Förster) energy transfer followed by 1[dπ*]→3[dπ*] intersystem crossing. The data also demonstrate that coordinated 1 reductively quenches the porphyrin S1 state to produce the [ZnPor?][ 1+ ] charge‐separated state. This is a rare example of the reductive quenching of zinc porphyrin chromophores. The presence in the [ZnPor?][ 1+ ] charge‐separated states of powerfully reducing zinc–porphyrin radical anions, which are capable of sensitizing a wide range of reductive electrocatalysts, and the 1+ ion, which can initiate the oxidation of H2, produces an integrated photochemical system with the thermodynamic capability of driving photoredox processes that result in the transfer of renewable reducing equivalents instead of the consumption of conventional sacrificial donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号