首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new design is presented for the incorporation of spiropyran photoswitches into nucleic acids by oligonucleotide solid phase synthesis. This design enables interaction of the 6‐nitrospirobenzopyran (NitroBIPS) photoswitch with the adjacent nucleobases and leaves the photochemical properties of NitroBIPS intact. UV/Vis spectroscopy and HPLC revealed that NitroBIPS incorporated into DNA consists of up to 40 % merocyanine in its thermal equilibrium and undergoes reversible switching between the photoisomeric spiropyran (SP) and merocyanin (MC) state by alternating excitation using visible light or heat for at least fifteen switching cycles. Exchanging the chromene part of NitroBIPS on the DNA level gives access to differently substituted spiropyran derivatives allowing the screening for spiropyrans with suitable properties in a straightforward manner. Thus, by incorporating the highly hydrolysis‐stable pyrido‐spiropyran derivative PyBIPS pure light‐triggered reversible switching of a spiropyran in DNA has been realized for the first time. Therefore, this design represents a new useful platform for investigating the photochromic behavior of different spiropyran photoswitches in a nucleic acid environment and for using spiropyrans to induce light‐ or heat‐triggered changes in conformations or in fluorescence quenching properties of oligonucleotides.  相似文献   

2.
The spatiotemporal regulation of light‐gated ion channels is a powerful tool to study physiological pathways and develop personalized theranostic modalities. So far, most existing light‐gated channels are limited by their action spectra in the ultraviolet (UV) or visible region. Simple and innovative strategies for the specific attachment of photoswitches on the cell surface without modifying or genetically encoding channel structures, and more importantly, that enable the remote activation of ion‐channel functions within near‐infrared (NIR) spectral window in living systems, remain a challenging concern. Herein, metabolic glycan biosynthesis is used to achieve site‐specific covalent attachment of near‐infrared‐light‐mediated lanthanide‐doped upconversion nanocrystals (UCNs) to the cell surface through copper‐free click cyclization. Upon irradiation with 808 nm light, the converted emission at 480 nm could activate a light‐gated ion channel, channelrhodopsins‐2 (ChR2), and thus remotely control the cation influx. This unique strategy provides valuable insights on the specific regulation membrane‐associated activities in vivo.  相似文献   

3.
Upconverting nanoparticles (UCNPs) convert near‐infrared (NIR) light into UV or visible light that can trigger photoreactions of photosensitive compounds. In this paper, we demonstrate how to reduce the intensity of NIR light for UCNP‐assisted photochemistry. We synthesized two types of UCNPs with different emission bands and five photosensitive compounds with different absorption bands. A λ=974 nm laser was used to induce photoreactions in all of the investigated photosensitive compounds in the presence of the UCNPs. The excitation thresholds of the photoreactions induced by λ=974 nm light were measured. The lowest threshold was 0.5 W cm?2, which is lower than the maximum permissible exposure of skin (0.726 W cm?2). We demonstrate that low‐intensity NIR light can induce photoreactions after passing through a piece of tissue without damaging the tissue. Our results indicate that the threshold for UCNP‐ assisted photochemistry can be reduced by using highly photosensitive compounds that absorb upconverted visible light. Low excitation intensity in UCNP‐assisted photochemistry is important for biomedical applications because it minimizes the overheating problems of NIR light and causes less photodamage to biomaterials.  相似文献   

4.
Three visible-light responsive photoswitches are reported, azobis(1-methyl-benzimidazole) ( 1 ), azobis(benzoxazole) ( 2 ) and azobis(benzothiazole) ( 3 ). Photostationary distributions are obtained upon irradiation with visible light comprising approximately 80 % of the thermally unstable isomer, with thermal half-lives up to 8 min and are mostly invariant to solvent. On protonation, compound 1 H+ has absorption extending beyond 600 nm, allowing switching with yellow light, and a thermal half-life just under 5 minutes. The two isomers have significantly different pKa values, offering potential as a pH switch. The absorption spectra of 2 and 3 are insensitive to acid, although changes in the thermal half-life of 3 indicate more basic intermediates that significantly influence the thermal barrier to isomerization. These findings are supported by high-level ab initio calculations, which validate that protonation occurs on the ring nitrogen and that the Z isomer is more basic in all cases.  相似文献   

5.
We introduce nitrile imine‐mediated tetrazole–ene cycloadditions (NITEC) in the presence of upconversion nanoparticles (UCNPs) as a powerful covalent coupling tool. When a pyrene aryl tetrazole derivative (λabs, max=346 nm) and UCNPs are irradiated with near‐infrared light at 974 nm, rapid conversion of the tetrazole into a reactive nitrile imine occurs. In the presence of an electron‐deficient double bond, quantitative conversion into a pyrazoline cycloadduct is observed under ambient conditions. The combination of NITEC and UCNP technology is used for small‐molecule cycloadditions, polymer end‐group modification, and the formation of block copolymers from functional macromolecular precursors, constituting the first example of a NIR‐induced cycloaddition. To show the potential for in vivo applications, through‐tissue experiments with a biologically relevant biotin species were carried out. Quantitative cycloadditions and retention of the biological activity of the biotin units are possible at 974 nm irradiation.  相似文献   

6.
A near‐infrared (NIR) induced decomposable polymer nanocapsule is demonstrated. The nanocapsules are fabricated based on layer‐by‐layer co‐assembly of azobenzene functionalized polymers and up/downconversion nanoparticles (U/DCNPs). When the nanocapsules are exposed to 980 nm light, ultraviolet/visible photons emitted by the U/DCNPs can trigger the photoisomerization of azobenzene groups in the framework. The nanocapsules could decompose from large‐sized nanocapsule to small U/DCNPs. Owing to their optimized original size (ca. 180 nm), the nanocapsules can effectively avoid biological barriers, provide a long blood circulation (ca. 5 h, half‐life time) and achieve four‐fold tumor accumulation. It can fast eliminate from tumor within one hour and release the loaded drugs for chemotherapy after NIR‐induced dissociation from initial 180 nm capsules to small 20 nm U/DCNPs.  相似文献   

7.
Herein, near‐infrared (NIR) photocontrolled iodide‐mediated reversible‐deactivation radical polymerization (RDRP) of methacrylates, without an external photocatalyst, was developed using an alkyl iodide (e.g., 2‐iodo‐2‐methylpropionitrile) as the initiator at room temperature. This example is the first use of a series of special solvents containing carbonyl groups (e.g., 1,3‐dimethyl‐2‐imidazolidinone) as both solvent and catalyst for photocontrolled RDRP using long‐wavelength (λmax=730 nm) irradiation. The polymerization system comprises monomer, alkyl iodide initiator, and solvent. Well‐defined polymers were synthesized with excellent control over the molecular weights and molecular weight distributions (Mw/Mn<1.21). The living features of this system were confirmed by polymerization kinetics, multiple controlled “on‐off” light switching cycles, and chain extension experiments. Importantly, the polymerizations proceeded successfully with various barriers (pork skin and A4 paper), demonstrating the advantage of high‐penetration NIR light.  相似文献   

8.
Photoregulated polymerizations are typically conducted using high‐energy (UV and blue) light, which may lead to undesired side reactions. Furthermore, as the penetration of visible light is rather limited, the range of applications with such wavelengths is likewise limited. We herein report the first living radical polymerization that can be activated and deactivated by irradiation with near‐infrared (NIR) and far‐red light. Bacteriochlorophyll a (Bachl a) was employed as a photoredox catalyst for photoinduced electron transfer/reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization. Well‐defined polymers were thus synthesized within a few hours under NIR (λ=850 nm) and far‐red (λ=780 nm) irradiation with excellent control over the molecular weight (Mn/Mw<1.25). Taking advantage of the good penetration of NIR light, we showed that the polymerization also proceeded smoothly when a translucent barrier was placed between light source and reaction vessel.  相似文献   

9.
Molecular photoswitching with red light is greatly desired to evade photodamage and achieve specific photoresponses. In virtually all reported cases however, only one switching direction uses red light while for the reverse switching, UV or visible light is needed. All-red-light photoswitching brings with it the clear advantage of pushing photoswitching to the limit of the low-energy spectrum, but no viable system is available currently. Here we report on peri-anthracenethioindigo (PAT) as molecular scaffold for highly efficient all-red-light photoswitching with an outstanding performance and property profile. The PAT photoswitch provides near-infrared (NIR) absorption up to 850 nm, large negative photochromism with more than 140 nm maxima shifts and changes color from green to blue upon irradiation with two shades of red light. Thermal stability of the metastable Z isomer is high with a corresponding half-life of days at 20 °C. Application in red-light responsive polymers undergoing pronounced and reversible green to blue color changes demonstrate spatially resolved photoswitching. The PAT photoswitch thus offers unique responsiveness to very low energy light together with predictable and large geometrical changes within a rigid molecular scaffold. We expect a plethora of applications for PAT in the near future, e.g. in materials, molecular machines or biological context.  相似文献   

10.
The local heating of poly(3,4‐ethylenedioxythiophene) (PEDOT) by a photothermal effect directed by near‐infrared (NIR) light induces unfolding of absorbed collagen triple helices, yielding soluble collagen single‐helical structures. This dissociation of collagens allowed the harvesting of a living idiomorphic cell sheet, achieved upon irradiation with NIR light (λ=808 nm). The PEDOT layer was patterned and cells were successfully cultured on the patterned substrate. Cell sheets of various shapes mirroring the PEDOT pattern could be detached after a few minutes of irradiation with NIR light. The PEDOT patterns guided not only the entire shape of the cell sheets but also the spreading direction of the cells in the sheets. This photothermally induced dissociation of collagen provided a fast non‐invasive harvesting method and tailor‐made cell‐sheet patterns.  相似文献   

11.
Near‐infrared (NIR) imaging techniques have attracted significant attention for biological and medicinal applications due to the ability of NIR to penetrate deeply into tissues. However, there are very few stable, activatable molecular probes that can utilize NIR light in the wavelength range beyond 800 nm. Herein, we report a new activatable NIR system for photoacoustic imaging based on tautomeric benziphthalocyanines (BPcs). We found that the existence of a free hydroxyl group is crucial for NIR absorption of BPcs. Synthesized water‐soluble hydroxy BPcs exhibited high photostability and no fluorescence, which are desirable features for photoacoustic imaging. We synthesized BPcs in which the free hydroxyl group was masked by an esterase‐labile or an H2O2‐labile group. The photoacoustic signals of these hydroxy‐masked BPcs were increased upon NIR excitation at 880 nm in the presence of esterase or H2O2, respectively. These are rare examples of activatable probes utilizing NIR light at around 900 nm.  相似文献   

12.
Near‐infrared (NIR) imaging techniques have attracted significant attention for biological and medicinal applications due to the ability of NIR to penetrate deeply into tissues. However, there are very few stable, activatable molecular probes that can utilize NIR light in the wavelength range beyond 800 nm. Herein, we report a new activatable NIR system for photoacoustic imaging based on tautomeric benziphthalocyanines (BPcs). We found that the existence of a free hydroxyl group is crucial for NIR absorption of BPcs. Synthesized water‐soluble hydroxy BPcs exhibited high photostability and no fluorescence, which are desirable features for photoacoustic imaging. We synthesized BPcs in which the free hydroxyl group was masked by an esterase‐labile or an H2O2‐labile group. The photoacoustic signals of these hydroxy‐masked BPcs were increased upon NIR excitation at 880 nm in the presence of esterase or H2O2, respectively. These are rare examples of activatable probes utilizing NIR light at around 900 nm.  相似文献   

13.
Herein, we report a new drug‐delivery system (DDS) that is comprised of a near‐infrared (NIR)‐light‐sensitive gold‐nanorod (GNR) core and a phase‐changing poly(ε‐caprolactone)‐b‐poly(ethylene glycol) polymer corona (GNR@PCL‐b‐PEG). The underlying mechanism of the drug‐loading and triggered‐release behaviors involves the entrapment of drug payloads among the PCL crystallites and a heat‐induced phase change, respectively. A low premature release of the pre‐loaded doxorubicin was observed in PBS buffer (pH 7.4) at 37 °C (<10 % of the entire payload after 48 h). However, release could be activated within 30 min by conventional heating at 50 °C, above the Tm of the crystalline PCL domain (43.5 °C), with about 60 % release over the subsequent 42 h at 37 °C. The NIR‐induced heating of an aqueous suspension of GNR@PCL‐b‐PEG under NIR irradiation (802 nm) was investigated in terms of the irradiation period, power, and concentration‐dependent heating behavior, as well as the NIR‐induced shape‐transformation of the GNR cores. Remotely NIR‐triggered release was also explored upon NIR irradiation for 30 min and about 70 % release was achieved in the following 42 h at 37 °C, with a mild warming (<4 °C) of the surroundings. The cytotoxicity of GNR@PCL‐b‐PEG against the mouse fibroblastic‐like L929 cell‐line was assessed by MTS assay and good compatibility was confirmed with a cell viability of over 90 % after incubation for 72 h. The cellular uptake of GNR@PCL‐b‐PEG by melanoma MEL‐5 cells was also confirmed, with an averaged uptake of 1250(±110) particles cell?1 after incubation for 12 h (50 μg mL?1). This GNR@PCL‐b‐PEG DDS is aimed at addressing the different requirements for therapeutic treatments and is envisaged to provide new insights into DDS targeting for remotely triggered release by NIR activation.  相似文献   

14.
Near‐infrared light (NIR) possesses great advantages for light‐responsive controllable drug release, such as deep tissue penetration and low damage to healthy tissues. Herein, a NIR‐responsive drug delivery system is developed based on a NIR dye, indocyanine green (ICG), and anticancer drug, doxorubicin (DOX)‐loaded thermoresponsive block copolymer micelles, in which the drug release can be controlled via NIR irradiation. First, block copolymers, poly(oligo(ethylene glycol) methacrylate)‐block‐poly(furfuryl methacrylate) (POEGMA‐b‐PFMA), are synthesized by sequential reversible addition‐fragmentation chain‐transfer (RAFT) polymerization, followed by modification with N‐octyl maleimide through Diels–Alder (DA) reaction to produce POEGMA‐b‐POMFMA. The self‐assembly of POEGMA‐b‐POMFMA by nano­precipitation in aqueous solution affords the polymeric micelles which are used to simultaneously encapsulate ICG and DOX. Upon irradiation by NIR light (805 nm), the loaded DOX is released rapidly from the micelles due to partial retro DA reaction and local temperature increase‐induced faster drug diffusion by the photothermal effect. Cytotoxicity evaluation and intracellular distribution observation demonstrate significant synergistic effects of NIR‐triggered drug release, photothermal, and chemotherapy toward cancer cells under NIR irradiation.

  相似文献   


15.
Molecular photoswitches triggered with red or NIR light are optimal for photomodulation of complex biological systems, including efficient penetration of the human body for therapeutic purposes (“therapeutic window”). Yet, they are rarely reported, and even more rarely functional under aqueous conditions. In this work, fluorinated azobenzenes are shown to exhibit efficient E→Z photoisomerization with red light (PSS660nm >75 % Z) upon conjugation with unsaturated substituents. Initially demonstrated for aldehyde groups, this effect was also observed in a more complex structure by incorporating the chromophore into a cyclic dipeptide with propensity for self-assembly. Under physiological conditions, the latter molecule formed a supramolecular material that reversibly changed its viscosity upon irradiation with red light. Our observation can lead to design of new photopharmacology agents or phototriggered materials for in vivo use.  相似文献   

16.
The fall colors are signs of chlorophyll breakdown, the biological process in plants that generates phyllobilins. Most of the abundant natural phyllobilins are colorless, but yellow phyllobilins (phylloxanthobilins) also occur in fall leaves. As shown here, phylloxanthobilins are unique four‐stage photoswitches. Which switching mode is turned on is controlled by the molecular environment. In polar media, phylloxanthobilins are monomeric and undergo photoreversible Z/E isomerization, similar to that observed for bilirubin. Unlike bilirubin, however, the phylloxanthobilin Z isomers photodimerize in apolar solvents by regio‐ and stereospecific thermoreversible [2+2] cycloadditions from self‐assembled hydrogen‐bonded dimers. X‐ray analysis revealed the first stereostructure of a phylloxanthobilin and its hydrogen‐bonded self‐templating architecture, helping to rationalize its exceptional photoswitch features. The chemical behavior of phylloxanthobilins will play a seminal role in identifying biological roles of phyllobilins.  相似文献   

17.
Donor–acceptor type polymers bearing diketopyrrolopyrrole and 3,4‐ethylenedioxythiophene units are reported. The polymers are green and exhibit very low band‐gaps (1.19 eV) with strong and broad absorption (maxima of about 830 nm) in the near infrared (NIR) region in their neutral film states. The polymers display color changes between dark green and light blue with exceptional optical contrasts in the NIR regions of up to 78 and 63% as thin films and single‐layer electrochromic devices, respectively. Fast switching, good stabilities as well as high coloration efficiencies (743–901 cm2 C?1) were also observed. The polymers could also be potentially used as photovoltaic material, with a power conversion efficiency of up to 1.68%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1287–1295  相似文献   

18.
The bistability of spin states (e.g., spin crossover) in bulk materials is well investigated and understood. We recently extended spin‐state switching to isolated molecules at room temperature (light‐driven coordination‐induced spin‐state switching, or LD‐CISSS). Whereas bistability and hysteresis in conventional spin‐crossover materials are caused by cooperative effects in the crystal lattice, spin switching in LD‐CISSS is achieved by reversibly changing the coordination number of a metal complex by means of a photochromic ligand that binds in one configuration but dissociates in the other form. We present mathematical proof that the maximum efficiency in property switching by such a photodissociable ligand (PDL) is only dependent on the ratio of the association constants of both configurations. Rational design by using DFT calculations was applied to develop a photoswitchable ligand with a high switching efficiency. The starting point was a nickel–porphyrin as the transition‐metal complex and 3‐phenylazopyridine as the photodissociable ligand. Calculations and experiments were performed in two iterative steps to find a substitution pattern at the phenylazopyridine ligand that provided optimum performance. Following this strategy, we synthesized an improved photodissociable ligand that binds to the Ni–porphyrin with an association constant that is 5.36 times higher in its trans form than in the cis form. The switching efficiency between the diamagnetic and paramagnetic state is efficient as well (72 % paramagnetic Ni–porphyrin after irradiation at 365 nm, 32 % paramagnetic species after irradiation at 440 nm). Potential applications arise from the fact that the LD‐CISSS approach for the first time allows reversible switching of the magnetic susceptibility of a homogeneous solution. Photoswitchable contrast agents for magnetic resonance imaging and light‐controlled magnetic levitation are conceivable applications.  相似文献   

19.
A new electrochromic polymer, poly(2,3,5,8‐tetra(thiophen‐2‐yl)quinoxaline) (PTTQ), was synthesized electrochemically and its electrochromic properties were investigated. The polymer was characterized by Cyclic Voltammetry, Fourier Transform infrared spectroscopy, UV‐Vis‐NIR Spectroscopy, and colorimetry. Spectroelectrochemistry analysis demonstrated that the polymer can undergo both p‐ and true n‐type doping processes. The polymer, (PTTQ), has three accessible color states: an oxidized transmissive, a neutral light bluish‐green, and a reduced transmissive light gray. Switching ability of the polymer was evaluated by kinetic studies. The polymer revealed an excellent optical contrast of 98% in the NIR region. Outstanding optical contrast in the NIR region, high stability and fast switching times make this polymer an excellent candidate for NIR device applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3723–3731, 2008  相似文献   

20.
Only one type of lanthanide-doped upconverting nanoparticle (UCNP) is needed to reversibly toggle photoresponsive organic compounds between their two unique optical, electronic, and structural states by modulating merely the intensity of the 980 nm excitation light. This reversible "remote-control" photoswitching employs an excitation wavelength not directly absorbed by the organic chromophores and takes advantage of the fact that designer core-shell-shell NaYF(4) nanoparticles containing Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) ions doped into separate layers change the type of light they emit when the power density of the near-infrared light is increased or decreased. At high power densities, the dominant emissions are ultraviolet and are appropriate to drive the ring-closing, forward reactions of dithienylethene (DTE) photoswitches. The visible light generated from the same core-shell-shell UCNPs at low power densities triggers the reverse, ring-opening reactions and regenerates the original photoisomers. The "remote-control" photoswitching using NIR light is as equally effective as the direct switching with UV and visible light, albeit the reaction rates are slower. This technology offers a highly convenient and versatile method to spatially and temporally regulate photochemical reactions using a single light source and changing either its power or its focal point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号