首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the increased energy demand,developing renewable and clean energy technologies becomes more and more significant to mitigate climate warming and alleviate the environmental pollution.The key point is design and synthesis of low cost and efficient materials for a wide variety of electrochemical reactions.Over the past ten years,two-dimensional(2D)nanomaterials that graphene represents have been paid much attention as a class of the most promising candidates for heterogeneous electrocatalysts in electrochemical storage and conversion.Their unique properties,such as good chemical stability,good flexibility,and good electronic properties,along with their nanosized thickness and large specific area,make them exhibit comprehensively good performances for energy storage and conversion.Here,we present an overview on the recent advances in electrochemical applications of graphene,graphdiyne,transition metal dichalcogenides(TMDs),and MXenes for supercapacitors(SCs),oxygen reduction reaction(ORR),and hydrogen evolution reaction(HER).  相似文献   

2.
Two‐dimensional (2D) layered semiconducting transition‐metal dichalcogenides (TMDCs) are promising candidates for next‐generation ultrathin, flexible, and transparent electronics. Chemical vapor deposition (CVD) is a promising method for their controllable, scalable synthesis but the growth mechanism is poorly understood. Herein, we present systematic studies to understand the CVD growth mechanism of monolayer MoSe2, showing reaction pathways for growth from solid and vapor precursors. Examination of metastable nanoparticles deposited on the substrate during growth shows intermediate growth stages and conversion of non‐stoichiometric nanoparticles into stoichiometric 2D MoSe2 monolayers. The growth steps involve the evaporation and reduction of MoO3 solid precursors to sub‐oxides and stepwise reactions with Se vapor to finally form MoSe2. The experimental results and proposed model were corroborated by ab initio Car–Parrinello molecular dynamics studies.  相似文献   

3.
This paper has experimentally proved that hydrogen accumulates in large quantities in metal-ceramic and pocket electrodes of alkaline batteries during their operation. Hydrogen accumulates in the electrodes in an atomic form. After the release of hydrogen from the electrodes, a powerful exothermic reaction of atomic hydrogen recombination with a large energy release occurs. This exothermic reaction is the cause of thermal runaway in alkaline batteries. For the KSL-15 battery, the gravimetric capacity of sintered nickel matrix of the oxide-nickel electrode, as hydrogen storage, is 20.2 wt%, and cadmium electrode is 11.5 wt%. The stored energy density in the metal-ceramic matrix of the oxide-nickel electrode of the battery KSL-15 is 44 kJ/g, and in the cadmium electrode it is 25 kJ/g. The similar values for the KPL-14 battery are as follows. The gravimetric capacity of the active substance of the pocket oxide-nickel electrode, as a hydrogen storage, is 22 wt%, and the cadmium electrode is 16.9 wt%. The density of the stored energy in the active substance oxide-nickel electrode is 48 kJ/g, and in the active substance of the cadmium electrode it is 36.8 kJ/g. The obtained results of the accumulation of hydrogen energy in the electrodes by the electrochemical method are three times higher than any previously obtained results using the traditional thermochemical method.  相似文献   

4.
Construction of discrete, self‐assembled architectures in water has gained significant interest in recent years as a wide range of applications arises from their defined 3D structure. In this review we jointly discuss the efforts of supramolecular chemists and biotechnologists who previously worked independently, to tackle discipline‐specific challenges associated with construction of assemblies from synthetic and bio‐derived components, respectively. Going forward, a more interdisciplinary research approach will expedite development of complexes with real‐world applications that exploit the benefits of compartmentalisation. In support of this, we summarise advances made in the development of discrete, water‐soluble assemblies, with particular focus on their current and prospective applications. Areas where understanding and methodologies can be transferred from one sector to the adjacent field are highlighted in anticipation this will yield advances not possible from either field alone.  相似文献   

5.
A wire‐shaped energy device that can perform photoelectric conversion and electrochemical storage was developed through a simple but effective twisting process. The energy wire exhibited a high energy conversion efficiency of 6.58 % and specific capacitance of 85.03 μF cm?1 or 2.13 mF cm?2, and the two functions were alternately realized without sacrificing either performance.  相似文献   

6.
Two dimensional (2D) porous materials have great potential in electrochemical energy conversion and storage. Over the past five years, our research group has focused on Simple, Mass, Homogeneous and Repeatable Synthesis of various 2D porous materials and their applications for electrochemical energy storage especially for supercapacitors (SCs). During the experimental process, through precisely controlling the experimental parameters, such as reaction species, molar ratio of different ions, concentration, pH value of reaction solution, heating temperature, and reaction time, we have successfully achieved the control of crystal structure, composition, crystallinity, morphology, and size of these 2D porous materials including transition metal oxides (TMOs), transition metal hydroxides (TMHOs), transition metal oxalates (TMOXs), transition metal coordination complexes (TMCCs) and carbon materials, as well as their derivatives and composites. We have also named some of them with CQU‐Chen (CQU is the initialism of Chongqing University, Chen is the last name of Lingyun Chen), such as CQU‐Chen‐Co?O‐1, CQU‐Chen‐Ni?O?H‐1, CQU‐Chen‐Zn?Co?O‐1, CQU‐Chen‐Zn?Co?O‐2, CQU‐Chen‐OA?Co‐2‐1, CQU‐Chen‐Co?OA‐1, CQU‐Chen‐Ni?OA‐1, CQU‐Chen‐Gly?Co‐3‐1, CQU‐Chen‐Gly?Ni‐2‐1, CQU‐Chen‐Gly?Co?Ni‐1, etc. The introduction of 2D porous materials as electrode materials for SCs improves the energy storage performances. These materials provide a large number of active sites for ion adsorption, supply plentiful channels for fast ion transport and boost electrical conductivity and facilitate electron transportation and ion penetration. The unique 2D porous structures review is mainly devoted to the introduction of our contribution in the 2D porous nanostructured materials for SC. Finally, the further directions about the preparation of 2D porous materials and electrochemical energy conversion and storage applications are also included.  相似文献   

7.
Transition‐metal phosphides (TMPs) have emerged as a fascinating class of narrow‐gap semiconductors and electrocatalysts. However, they are intrinsic nonlayered materials that cannot be delaminated into two‐dimensional (2D) sheets. Here, we demonstrate a general bottom‐up topochemical strategy to synthesize a series of 2D TMPs (e.g. Co2P, Ni12P5, and CoxFe2?xP) by using phosphorene sheets as the phosphorus precursors and 2D templates. Notably, 2D Co2P is a p‐type semiconductor, with a hole mobility of 20.8 cm2 V?1 s?1 at 300 K in field‐effect transistors. It also behaves as a promising electrocatalyst for the oxygen evolution reaction (OER), thanks to the charge‐transport modulation and improved surface exposure. In particular, iron‐doped Co2P (i.e. Co1.5Fe0.5P) delivers a low overpotential of only 278 mV at a current density of 10 mA cm?2 that outperforms the commercial Ir/C benchmark (304 mV).  相似文献   

8.
Three unprecedented 2D architectures made up of sandwich‐type tetra‐metal‐substituted polyoxotungstates and transition‐metal complexes, [Cu(dien)(H2O)]2{[Cu(dien)(H2O)]2‐[Cu(dien)(H2O)2]2[Cu4(SiW9O34)2]}? 5H2O ( 1 ; dien=diethylenetriamine), [Zn(enMe)2(H2O)]2{[Zn(enMe)2]2[Zn4‐ (HenMe)2(PW9O34)2]}?8H2O ( 2 ; enMe =1,2‐diaminopropane), and [Zn(enMe)2‐(H2O)]4[Zn(enMe)2]2{(enMe)2{[Zn‐ (enMe)2]2[Zn4(HSiW9O34)2]}{[Zn‐ (enMe)2(H2O)]2[Zn4(HSiW9O34)2]}}? 13H2O ( 3 ) were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and single‐crystal X‐ray diffraction. Compound 1 consists of anions [Cu4(SiW9O34)2]12? linked by copper complexes into a 2D structure, whereas 2 is constructed from novel inorganic–organic hybrid anions [Zn4(HenMe)2(PW9O34)2]8? linked by zinc complexes into a 2D structure. The most interesting is the unique 2D network 3 , which consists of anions [Zn4(PW9O34)2]10? with two types of bridging groups: zinc complexes and enMe ligands.  相似文献   

9.
Hierarchical nanomaterials are highly suitable as electrocatalysts and electrocatalyst supports in electrochemical energy conversion devices. The intrinsic kinetics of an electrocatalyst are associated with the nanostructure of the active phase and the support, while the overall properties are also affected by the mesostructure. Therefore, both structures need to be controlled. A comparative state‐of‐the‐art review of catalysts and supports is provided along with detailed synthesis methods. To further improve the design of these hierarchical nanomaterials, in‐depth research on the effect of materials architecture on reaction and transport kinetics is necessary. Inspiration can be derived from nature, which is full of very effective hierarchical structures. Developing fundamental understanding of how desired properties of biological systems are related to their hierarchical architecture can guide the development of novel catalytic nanomaterials and nature‐inspired electrochemical devices.  相似文献   

10.
液态金属电极电导率高,电极界面容易构建,在充放电过程中可有效避免电极结构形变、枝晶生长等问题,在储能电池领域具有重要应用价值. 本文主要讨论了液态金属电极在液态金属电池、钠硫电池和ZEBRA电池中的应用进展,重点介绍了液态金属电池关键材料体系、充放电机制及电池构型等,评述了液态金属电极储能应用中涉及的熔盐电解质、固态陶瓷隔膜、多场影响因素等方面的重要研究进展,分析了高温密封、腐蚀防护等关键问题,明确了液态金属电极在储能电池应用中的发展方向.  相似文献   

11.
12.
Membranes which allow fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton‐exchange membrane (PEM) fuel cells (PEMFCs) and redox flow batteries (RFBs). Herein we report a new approach to designing solution‐processable ion‐selective polymer membranes with both intrinsic microporosity and ion‐conductive functionality. Polymers are synthesized with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively charged subnanometer‐sized confined ionic channels. The ready transport of protons and cations through these membranes, and the high selectivity towards nanometer‐sized redox‐active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell.  相似文献   

13.
High‐resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H‐MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

14.
15.
A promising family of mixed transition‐metal oxides (MTMOs) (designated as AxB3‐xO4; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non‐stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low‐cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro‐/nanostructures, along with their applications as electrode materials for lithium‐ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal–air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next‐generation electrochemical energy storage/conversion systems are also presented.  相似文献   

16.
当今社会,电化学储能器件在人类的社会活动中变得越来越重要。电极材料作为电化学储能器件的核心部分,一直是人们研究的焦点。石墨炔是一种新型的二维平面结构的全碳材料,它宽的层间距、大的比表面积、独特的三维孔隙结构和好的导电性使其在能源存储器件电极材料应用中具有巨大的潜力。基于石墨炔温和的制备方法与独特的结构特征,本文详细介绍了近年来石墨炔在储能方面的理论分析和实验进展。通过研究锂/钠在单层、多层石墨炔上的迁移率和存储,理论分析石墨炔基电池具有很好的储锂储钠性能。实验方面,石墨炔作为电极材料在储钠储锂方面的容量与理论值相近。此外石墨炔作为电极材料成功应用于超级电容器和金属-硫电池,并表现出了优异的容量存储性能。石墨炔纳米形貌的调控、石墨炔的热处理,以及异原子的掺杂等均可以有效地提高石墨炔在这些储能器件中的性能。  相似文献   

17.
Other forms of energy are generally converted to electric energy and then transported to electrochemical devices, where the energy is stored, by external electric wires. To further improve total energy conversion and storage efficiency, interest in simultaneously realize the energy conversion and storage in a single device has increased. This Concept describes recent progress in developing such novel integrated energy devices. Both planar and wire architectures are carefully illustrated with an emphasis on the “energy wire” which has been the focus of past developments due to its unique and promising applications, such as being woven into clothes or other complex structures by conventional textile technology. The current challenges and future directions of the integrated devices, particularly in the wire architecture, are summarized.  相似文献   

18.
Low‐cost electrochemical energy storage systems (EESSs) are urgently needed to promote the application of renewable energy sources such as wind and solar energy. In analogy to lithium‐ion batteries, the cost of EESSs depends mainly on charge‐carrier ions and redox centers in electrodes, and their performance is limited by positive electrodes. In this context, this Minireview evaluates several EESS candidates and summarizes the known mixed polyanionic compounds (MPCs)—a family with robust frameworks and large channels for ion storage and migration. After comprehensive analysis, it is pointed out that a deeper exploration of MPCs may generate numerous novel crystallographically interesting compounds and excellent cathode materials for low‐cost energy storage applications.  相似文献   

19.
Controlled synthesis of transition‐metal hydroxides and oxides with earth‐abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition‐metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion‐containing aqueous solution undergoes photo‐induced reactions and produces hollow metal‐oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core–shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)2](NO3)0.2?H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo‐induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon‐induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.  相似文献   

20.
The carbon composite materials have been a research hotspot in the fields of catalysis, energy conversion and so on, because of their features of large structure and morphology variety, good chemical and electrochemical stability, and high electronic conductivity, large specific surface area and rich active sites. This paper summarizes some research progress of carbon composite materials, including assembly methodologies, their structure regulation, properties, and related applications. Moreover, the current challenges and the prospects of these materials are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号