首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two dimensional (2D) porous materials have great potential in electrochemical energy conversion and storage. Over the past five years, our research group has focused on Simple, Mass, Homogeneous and Repeatable Synthesis of various 2D porous materials and their applications for electrochemical energy storage especially for supercapacitors (SCs). During the experimental process, through precisely controlling the experimental parameters, such as reaction species, molar ratio of different ions, concentration, pH value of reaction solution, heating temperature, and reaction time, we have successfully achieved the control of crystal structure, composition, crystallinity, morphology, and size of these 2D porous materials including transition metal oxides (TMOs), transition metal hydroxides (TMHOs), transition metal oxalates (TMOXs), transition metal coordination complexes (TMCCs) and carbon materials, as well as their derivatives and composites. We have also named some of them with CQU‐Chen (CQU is the initialism of Chongqing University, Chen is the last name of Lingyun Chen), such as CQU‐Chen‐Co?O‐1, CQU‐Chen‐Ni?O?H‐1, CQU‐Chen‐Zn?Co?O‐1, CQU‐Chen‐Zn?Co?O‐2, CQU‐Chen‐OA?Co‐2‐1, CQU‐Chen‐Co?OA‐1, CQU‐Chen‐Ni?OA‐1, CQU‐Chen‐Gly?Co‐3‐1, CQU‐Chen‐Gly?Ni‐2‐1, CQU‐Chen‐Gly?Co?Ni‐1, etc. The introduction of 2D porous materials as electrode materials for SCs improves the energy storage performances. These materials provide a large number of active sites for ion adsorption, supply plentiful channels for fast ion transport and boost electrical conductivity and facilitate electron transportation and ion penetration. The unique 2D porous structures review is mainly devoted to the introduction of our contribution in the 2D porous nanostructured materials for SC. Finally, the further directions about the preparation of 2D porous materials and electrochemical energy conversion and storage applications are also included.  相似文献   

2.
A promising family of mixed transition‐metal oxides (MTMOs) (designated as AxB3‐xO4; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non‐stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low‐cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro‐/nanostructures, along with their applications as electrode materials for lithium‐ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal–air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next‐generation electrochemical energy storage/conversion systems are also presented.  相似文献   

3.
Ions transport through confined space with characteristic dimensions comparable to the Debye length has many applications, for example, in water desalination, dialysis, and energy conversion. However, existing 2D/3D smart porous membranes for ions transport and further applications are fragile, thermolabile, and/or difficult to scale up, limiting their practical applicability. Now, polymeric carbon nitride alternatively allows the creation of an ultrathin free‐standing carbon nitride membrane (UFSCNM), which can be fabricated by simple CVD polymerization and exhibits excellent nanofluidic ion‐transport properties. The surface‐charge‐governed ion transport also endows such UFSCNMs with the function of converting salinity gradients into electric energy. With advantages of low cost, facile fabrication, and the ease of scale up while supporting high ionic currents, UFSCNM can be considered as an alternative for energy conversion systems and new ionic devices.  相似文献   

4.
Wu  Qiang  Yang  Lijun  Wang  Xizhang  Hu  Zheng 《中国科学:化学(英文版)》2020,63(5):665-681
The electrochemistry in energy conversion and storage(ECS) not only relies on the active species in catalysts or energy-storage materials, but also involves mass/ion transport around the active species and electron transfer to the external circuit. To realize high-rate ECS process, new architectures for catalysts or energy-storage electrodes are required to ensure more efficient mass/charge transport. 3 D porous mesostructured materials constructed by nanoscale functional units can form a continuous conductive network for electron transfer and an interconnected multiscale pores for mass/ion transport while maintaining the high surface area, showing great promise in boosting the ECS process. In this review, we summarize the recent progress on the design,construction and applications of 3 D mesostructured carbon-based nanocages for ECS. The role of the hierarchical architectures to the high rate performance is discussed to highlight the merits of the mesostructured materials. The perspective on future opportunities and challenges is also outlined for deepening and extending the related studies and applications.  相似文献   

5.
Metal–organic framework cathodes usually exhibit low capacity and poor electrochemical performance for Li‐ion storage owing to intrinsic low conductivity and inferior redox activity. Now a redox‐active 2D copper–benzoquinoid (Cu‐THQ) MOF has been synthesized by a simple solvothermal method. The abundant porosity and intrinsic redox character endow the 2D Cu‐THQ MOF with promising electrochemical activity. Superior performance is achieved as a Li‐ion battery cathode with a high reversible capacity (387 mA h g?1), large specific energy density (775 Wh kg?1), and good cycling stability. The reaction mechanism is unveiled by comprehensive spectroscopic techniques: a three‐electron redox reaction per coordination unit and one‐electron redox reaction per copper ion mechanism is demonstrated. This elucidatory understanding sheds new light on future rational design of high‐performance MOF‐based cathode materials for efficient energy storage and conversion.  相似文献   

6.
Terpyridine‐functionalized graphene oxides were prepared for self‐assembly into 3D architectures with various metal ions (e.g., Fe, Ru). The resulting electrode materials showed significantly improved electroactivities for efficient energy conversion and storage. They showed promise for application in the oxygen reduction reaction (ORR), photocurrent generation, and supercapacitance.  相似文献   

7.
Low‐cost electrochemical energy storage systems (EESSs) are urgently needed to promote the application of renewable energy sources such as wind and solar energy. In analogy to lithium‐ion batteries, the cost of EESSs depends mainly on charge‐carrier ions and redox centers in electrodes, and their performance is limited by positive electrodes. In this context, this Minireview evaluates several EESS candidates and summarizes the known mixed polyanionic compounds (MPCs)—a family with robust frameworks and large channels for ion storage and migration. After comprehensive analysis, it is pointed out that a deeper exploration of MPCs may generate numerous novel crystallographically interesting compounds and excellent cathode materials for low‐cost energy storage applications.  相似文献   

8.
Sodium‐ion energy storage, including sodium‐ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium‐ion energy storage. It is an intriguing prospect, especially for large‐scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d‐spacing, a contribution of the graphene matrix, and the unique properties of the MoS2/G substantially optimize Na storage behavior, by accommodating large volume changes and facilitating fast ion diffusion. MoS2/G exhibits a stable capacity of approximately 350 mAh g?1 over 200 cycles at 0.25 C in half cells, and delivers a capacitance of 50 F g?1 over 2000 cycles at 1.5 C in pseudocapacitors with a wide voltage window of 0.1–2.5 V.  相似文献   

9.
A covalent organic framework integrating naphthalenediimide and triphenylamine units (NT‐COF) is presented. Two‐dimensional porous nanosheets are packed with a high specific surface area of 1276 m2 g?1. Photo/electrochemical measurements reveal the ultrahigh efficient intramolecular charge transfer from the TPA to the NDI and the highly reversible electrochemical reaction in NT‐COF. There is a synergetic effect in NT‐COF between the reversible electrochemical reaction and intramolecular charge transfer with enhanced solar energy efficiency and an accelerated electrochemical reaction. This synergetic mechanism provides the key basis for direct solar‐to‐electrochemical energy conversion/storage. With the NT‐COF as the cathode materials, a solar Li‐ion battery is realized with decreased charge voltage (by 0.5 V), increased discharge voltage (by 0.5 V), and extra 38.7 % battery efficiency.  相似文献   

10.
Na‐ion batteries are an attractive alternative to Li‐ion batteries for large‐scale energy storage systems because of their low cost and the abundant Na resources. This Review provides a comprehensive overview of selected anode materials with high reversible capacities that can increase the energy density of Na‐ion batteries. Moreover, we discuss the reaction and failure mechanisms of those anode materials with a view to suggesting promising strategies for improving their electrochemical performance.  相似文献   

11.
X‐ray nanotomography presents an unprecedented opportunity to study energy storage/conversion materials at nanometer scales in three dimensions, with both elemental and chemical sensitivity. A critical step in obtaining high‐quality X‐ray nanotomography data is reliable sample preparation to ensure that the entire sample fits within the field of view of the X‐ray microscope. Although focused‐ion‐beam lift‐out has previously been used for large sample (few to tens of microns) preparation, a difficult undercut and lift‐out procedure results in a time‐consuming sample preparation process. Herein, we propose a much simpler and direct sample preparation method to resolve the issues that block the view of the sample base after milling and during the lift‐out process. This method is applied on a solid‐oxide fuel cell and a lithium‐ion battery electrode, before numerous critical 3D morphological parameters are extracted, which are highly relevant to their electrochemical performance. A broad application of this method for microstructure study with X‐ray nanotomography is discussed and presented.  相似文献   

12.
Two‐dimensional (2D) nanomaterials are one of the most promising types of candidates for energy‐storage applications due to confined thicknesses and high surface areas, which would play an essential role in enhanced reaction kinetics. Herein, a universal process that can be extended for scale up is developed to synthesise ultrathin cobalt‐/nickel‐based hydroxides and oxides. The sodium and lithium storage capabilities of Co3O4 nanosheets are evaluated in detail. For sodium storage, the Co3O4 nanosheets exhibit excellent rate capability (e.g., 179 mA h g?1 at 7.0 A g?1 and 150 mA h g?1 at 10.0 A g?1) and promising cycling performance (404 mA h g?1 after 100 cycles at 0.1 A g?1). Meanwhile, very impressive lithium storage performance is also achieved, which is maintained at 1029 mA h g?1 after 100 cycles at 0.2 A g?1. NiO and NiCo2O4 nanosheets are also successfully prepared through the same synthetic approach, and both deliver very encouraging lithium storage performances. In addition to rechargeable batteries, 2D cobalt‐/nickel‐based hydroxides and oxides are also anticipated to have great potential applications in supercapacitors, electrocatalysis and other energy‐storage‐/‐conversion‐related fields.  相似文献   

13.
A three‐dimensional (3D) hollow CoWO4 composite grown on Ni‐foam (3D?H CoWO4/NF) based on a flower‐like metal‐organic framework (MOF) is designed by utilizing a facile dipping and hydrothermal approach. The 3D?H CoWO4/NF not only possesses large specific areas and rich active sites, but also accommodates volume expansion/contraction during charge/discharge processes. In addition, the unique structure facilitates fast electron/ion transport of 3D?H CoWO4/NF. Meanwhile, a series of characterization measurements demonstrate the appropriate morphology and excellent electrochemical performance of the material. The 3D?H CoWO4/NF possesses a high specific capacitance of 1395 F g?1, an excellent cycle stability with 89% retention after 3000 cycles and superior rate property. Furthermore, the 3D?H CoWO4/NF can be used as a cathode to configurate an asymmetric supercapacitor (ASC), and 3D?H CoWO4/NF//AC shows a good energy density (29.0 W h kg?1). This work provides a facile method for the preparation of 3D‐hollow electrode materials with high electrochemical capability for advanced energy storage devices.  相似文献   

14.
Energy storage devices, such as lithium‐ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber‐shaped hybrid energy‐storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm?3 or 90 Wh kg?1) many times higher than for other forms of supercapacitors and approximately 3 times that of thin‐film batteries; the power density (1 W cm?3 or 5970 W kg?1) is approximately 140 times of thin‐film lithium‐ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics.  相似文献   

15.
Secondary Li?ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li?ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li?ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li?ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials.  相似文献   

16.
In this work we critically compare electrochemical stability and specific capacitance of the three‐dimensional (3D) polypyrrole membrane and the dense polypyrrole film fabricated at the same conditions. Herein, we concern about study the influence of the electrode morphology on the kinetics of diffusion process by analyzing voltammetry, coulometry and impedance response. This allows us to calculate well‐sustained values of the diffusion coefficient, specific capacitance and diffusion resistance, which summarize equilibrium parameters. The ultra‐thin walls, uniform porosity and well‐ordered structure called “inverse opal” ensure an efficient mass transport and fast charge exchange of the porous polypyrrole resulting in superior electrochemical performance. The calculated diffusion coefficient of anion doping process in 3D polypyrrole is more than two orders of magnitude higher comparing to the control sample. The improved electrochemical stability at high anodic potential is correlated with unique porous and dynamic structure of the polymer that is capable of handling volumetric changes upon electrode polarization. An effective diffusion length for the porous PPy remains unchanged during degradation process (overoxidation) and is significantly smaller in comparison to the dense polymer film, indicating that the degradation process for the porous system is somewhat hindered. This work provides an important insight for fast and scalable synthesis of 3D polymer electrode with improved electrochemical activity and stability for the future energy storage applications.  相似文献   

17.
Finding out how to overcome the self‐aggregation of nanostructured electrode materials is a very important issue in lithium‐ion battery technology. Herein, by an in situ construction strategy, hierarchical SnO2 nanosheet architectures have been fabricated on a three‐dimensional macroporous substrate, and thus the aggregation of the SnO2 nanosheets was effectively prevented. The as‐prepared hierarchical SnO2 nanoarchitectures on the nickel foam can be directly used as an integrated anode for lithium‐ion batteries without the addition of other ancillary materials such as carbon black or binder. In view of their apparent advantages, such as high electroactive surface area, ultrathin sheet, robust mechanical strength, shorter ion and electron transport path, and the specific macroporous structure, the hierarchical SnO2 nanosheets exhibit excellent lithium‐storage performance. Our present growth approach offers a new technique for the design and synthesis of metal oxide hierarchical nanoarrays that are promising for electrochemical energy‐storage electrodes without carbon black and binder.  相似文献   

18.
Two‐dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition‐metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS2‐on‐MXene heterostructures through in situ sulfidation of Mo2TiC2Tx MXene. The computational results show that MoS2‐on‐MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render the as‐prepared MoS2‐on‐MXene heterostructures stable Li‐ion storage performance. This work paves the way to use MXene to construct 2D heterostructures for energy storage applications.  相似文献   

19.
Electrocatalyst degradation due to dissolution is one of the major challenges in electrochemical energy conversion technologies such as fuel cells and electrolysers. While tendencies towards dissolution can be grasped considering available thermodynamic data, the kinetics of material's stability in real conditions is still difficult to predict and have to be measured experimentally, ideally in‐situ and/or on‐line. On‐line inductively coupled plasma mass spectrometry (ICP‐MS) is a technique developed recently to address exactly this issue. It allows time‐ and potential‐resolved analysis of dissolution products in the electrolyte during the reaction under dynamic conditions. In this work, applications of on‐line ICP‐MS techniques in studies embracing dissolution of catalysts for oxygen reduction (ORR) and evolution (OER) as well as hydrogen oxidation (HOR) and evolution (HER) reactions are reviewed.  相似文献   

20.
Climate change and the energy crisis have promoted the rapid development of electrochemical energy‐storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy‐storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy‐storage devices, such as lithium‐ion batteries, supercapacitors, and lithium‐ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon‐based energy‐storage materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号