首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Near-infrared (NIR) fluorescence probes are especially useful for simple and noninvasive in vivo imaging inside the body because of low autofluorescence and high tissue transparency in the NIR region compared with other wavelength regions. However, existing NIR fluorescence probes for matrix metalloproteinases (MMPs), which are tumor, atherosclerosis, and inflammation markers, have various disadvantages, especially as regards sensitivity. Here, we report a novel design strategy to obtain a NIR fluorescence probe that is rapidly internalized by free diffusion and well retained intracellularly after activation by extracellular MMPs. We designed and synthesized four candidate probes, each consisting of a cell permeable or nonpermeable NIR fluorescent dye as a F?rster resonance energy transfer (FRET) donor linked to the NIR dark quencher BHQ-3 as a FRET acceptor via a MMP substrate peptide. We applied these probes for detection of the MMP activity of cultured HT-1080 cells, which express MMP2 and MT1-MMP, by fluorescence microscopy. Among them, the probe incorporating BODIPY650/665, BODIPY-MMP, clearly visualized the MMP activity as an increment of fluorescence inside the cells. We then applied this probe to a mouse xenograft tumor model prepared with HT-1080 cells. Following intratumoral injection of the probe, MMP activity could be visualized for much longer with BODIPY-MMP than with the probe containing SulfoCy5, which is cell impermeable and consequently readily washed out of the tissue. This simple design strategy should be applicable to develop a range of sensitive, rapidly responsive NIR fluorescence probes not only for MMP activity, but also for other proteases.  相似文献   

2.
Cancer‐cell‐specific pH‐activatable polymer nanogels consisting of CD44‐receptor‐targeting hyaluronic acid (HA), pH‐sensitive poly(β‐amino ester) (PBAE), and near‐infrared (NIR) fluorescent indocyanine green (ICG) were synthesized and used to detect cancer cells. The HA/PBAE/ICG‐polymer‐nanogel‐based NIR probe was nonfluorescent outside of tumor cells. After internalization by CD44‐receptor‐mediated endocytosis, the probe accumulated in the late endosomes or lysosomes where the acidic pH solubilized the PBAE and caused instant disassembly of the polymer nanogel. During endosomal maturation, the encapsulated ICG was released from its quenched state, inducing strong NIR fluorescence recovery. The nanogels generate a highly tumor‐specific NIR signal with a reduced background signal.  相似文献   

3.
We present novel Schiff base ligands julolidine-carbonohydrazone 1 and julolidine-thiocarbonohydrazone 2 for selective detection of Cu(2+) in aqueous medium. The planar julolidine-based ligands can sense Cu(2+) colorimetrically with characteristic absorbance in the near-infrared (NIR, 700-1000 nm) region. Employing molecular probes 1 and 2 for detection of Cu(2+) not only allowed detection by the naked eye, but also detection of varying micromolar concentrations of Cu(2+) due to the appearance of distinct coloration. Moreover, Cu(2+) selectively quenches the fluorescence of julolidine-thiocarbonohydrazone 2 among all other metal ions, which increases the sensitivity of the probe. Furthermore, quenched fluorescence of the ligand 2 in the presence of Cu(2+) was restored by adjusting the complexation ability of the ligand. Hence, by treatment with ethylenediaminetetraacetic acid (EDTA), thus enabling reversibility and dual-check signaling, julolidine-thiocarbonohydrazone (2) can be used as a fluorescent molecular probe for the sensitive detection of Cu(2+) in biological systems. The ligands 1 and 2 can be utilized to monitor Cu(2+) in aqueous solution over a wide pH range. We have investigated the structural, electronic, and optical properties of the ligands using ab initio density functional theory (DFT) combined with time-dependent density functional theory (TDDFT) calculations. The observed absorption band in the NIR region is attributed to the formation of a charge-transfer complex between Cu(2+) and the ligand. The fluorescence-quenching behavior can be accounted for primarily due to the excited-state ligand 2 to metal (Cu(2+)) charge-transfer (LMCT) processes. Thus, experimentally observed characteristic NIR and fluorescence optical responses of the ligands upon binding to Cu(2+) are well supported by the theoretical calculations. Subsequently, we have employed julolidine-thiocarbonohydrazone 2 for reversible fluorescence sensing of intracellular Cu(2+) in cultured HEK293T cells.  相似文献   

4.
Thiophenols are highly toxic industrial materials that, once released, will accumulate in the environment, and ultimately in human bodies, thereby causing serious health problems. To achieve their selective and sensitive detection, a novel near‐infrared (NIR) fluorescent probe ( CCP‐1 ) from a focused library was developed for thiophenol species. Our studies show that CCP‐1 displays a thiophenol‐triggered 28‐fold fluorescence intensity enhancement at 706 nm, with a detection limit of 34 nm observed. It is also able to differentiate thiophenols from various other thiol‐containing analytes including hydrogen sulfide, hydrogen persulfide, and aliphatic thiols. In total, the desirable properties (e.g., excitation/emission in the NIR region, good cell‐membrane permeability, intracellular stability, and low cytotoxicity) make CCP‐1 a potential candidate for thiophenol detection both in vitro and in vivo. In addition, CCP‐1 , for the first time, successfully visualized thiophenols in mice models of thiophenol inhalation.  相似文献   

5.
Fluorescence imaging in the near‐infrared (NIR) region (650–900 nm) is useful for bioimaging because background autofluorescence is low and tissue penetration is high in this range. In addition, NIR fluorescence is useful as a complementary color window to green and red for multicolor imaging. Here, we compared the photoinduced electron transfer (PeT)‐mediated fluorescence quenching of silicon‐ and phosphorus‐substituted rhodamines (SiRs and PRs) in order to guide the development of improved far‐red to NIR fluorescent dyes. The results of density functional theory calculations and photophysical evaluation of a series of newly synthesized PRs confirmed that the fluorescence of PRs was more susceptible than that of SiRs to quenching via PeT. Based on this, we designed and synthesized a NIR fluorescence probe for Ca2+, CaPR‐1 , and its membrane‐permeable acetoxymethyl derivative, CaPR‐1 AM , which is distributed to the cytosol, in marked contrast to our previously reported Ca2+ far‐red to NIR fluorescence probe based on the SiR scaffold, CaSiR‐1 AM , which is mainly localized in lysosomes as well as cytosol in living cells. CaPR‐1 showed longer‐wavelength absorption and emission (up to 712 nm) than CaSiR‐1 . The new probe was able to image Ca2+ at dendrites and spines in brain slices, and should be a useful tool in neuroscience research.  相似文献   

6.
Folate receptors (FRs) are membrane proteins involved in folic acid uptake, and the alpha isoform (FR‐α) is overexpressed in ovarian and endometrial cancer cells. For fluorescence imaging of FRs in vivo, the near‐infrared (NIR) region (650–900 nm), in which tissue penetration is high and autofluorescence is low, is optimal, but existing NIR fluorescent probes targeting FR‐α show high non‐specific tissue adsorption, and require prolonged washout to visualize tumors. We have designed and synthesized a new NIR fluorescent probe, FolateSiR‐1 , utilizing a Si‐rhodamine fluorophore having a carboxy group at the benzene moiety, coupled to a folate ligand moiety through a negatively charged tripeptide linker. This probe exhibits very low background fluorescence and afforded a tumor‐to‐background ratio (TBR) of up to 83 in FR‐expressing tumor‐bearing mice within 30 min. Thus, FolateSiR‐1 has the potential to contribute to the research in the field of biology and the clinical medicine.  相似文献   

7.
A far-red to near-infrared (NIR) fluorescence probe, MMSiR, based on Si-rhodamine, was designed and synthesized for sensitive and selective detection of HOCl in real time. MMSiR and its oxidized product SMSiR have excellent properties, including pH-independence of fluorescence, high resistance to autoxidation and photobleaching, and good tissue penetration of far-red to NIR fluorescence emission. The value of MMSiR was confirmed by real-time imaging of phagocytosis using a fluorescence microscope. wsMMSiR, a more hydrophilic derivative of MMSiR, permitted effective in vivo imaging of HOCl generation in a mouse peritonitis model. This probe is expected to be a useful tool for investigating the wide range of biological functions of HOCl.  相似文献   

8.
The development of sensitive and selective small molecular probes that enable real‐time detection of endogenous cysteine (Cys) has become an attractive topic because of the essential roles played by Cys in controlling the cellular nitrogen balance and in maintaining biological redox homeostasis. Herein, we report a Cys‐specific probe, 2‐cyanobenzothiazol‐6‐yl acrylate (CBTOA), that shows not only fluorescence turn‐on for sensitive detection of endogenous Cys but also enhanced probe retention inside cells for real‐time monitoring of Cys levels upon external stimulation. Cys‐mediated intracellular formation of luciferin from CBTOA was the key strategy leading to this new type of fluorogenic probe. CBTOA showed fast response to Cys in living cells and liver tissue slices with high sensitivity and selectivity. By using CBTOA as a real‐time probe, we were able to monitor the change in Cys levels in living HeLa cells under ROS‐induced oxidative stress as well as in human mesenchymal stem cells during adipogenic differentiation.  相似文献   

9.
Folate receptors (FRs) are membrane proteins involved in folic acid uptake, and the alpha isoform (FR-α) is overexpressed in ovarian and endometrial cancer cells. For fluorescence imaging of FRs in vivo, the near-infrared (NIR) region (650–900 nm), in which tissue penetration is high and autofluorescence is low, is optimal, but existing NIR fluorescent probes targeting FR-α show high non-specific tissue adsorption, and require prolonged washout to visualize tumors. We have designed and synthesized a new NIR fluorescent probe, FolateSiR-1 , utilizing a Si-rhodamine fluorophore having a carboxy group at the benzene moiety, coupled to a folate ligand moiety through a negatively charged tripeptide linker. This probe exhibits very low background fluorescence and afforded a tumor-to-background ratio (TBR) of up to 83 in FR-expressing tumor-bearing mice within 30 min. Thus, FolateSiR-1 has the potential to contribute to the research in the field of biology and the clinical medicine.  相似文献   

10.
Fang  Hongbao  Chen  Yuncong  Wang  Yanjun  Geng  Shanshan  Yao  Shankun  Song  Dongfan  He  Weijiang  Guo  Zijian 《中国科学:化学(英文版)》2020,63(5):699-706
Biothiols, such as cysteine(Cys) and homocysteine(Hcy), play vital roles in biological homeostasis and are closely related to various pathological and physiological processes in the living systems. Therefore, the in vivo detection of biothiols is of great importance for early diagnosis of diseases and assessment of disease progression. In this work, we developed a near-infrared(NIR) fluorescence and photoacoustic dual-modal molecular probe(NIR-S) that can be specifically activated by Cys or Hcy. The aryl-thioether substituted cyanine probe can undergo nucleophilic substitution and Smiles rearrangement reaction, resulting in specific turn-on NIR fluorescence and ratiometric photoacoustic responses for Hcy/Cys. Thus, NIR-S not only realizes the specific NIR fluorescence and photoacoustic dual mode imaging to detect Hcy/Cys in solution, but also can be applied to living cells and mice to detect Hcy/Cys. This work provided a practical tool to detect Hcy/Cys levels in vivo, which would be beneficial for the early diagnosis and progress of diseases.  相似文献   

11.
Most reported fluorescent probes have limitations in practical applications in living systems due to the strong autofluorescence background,construction of probes with near-infrared(NIR) fluorescence emission is an accessible approach for addressing this challenge.We here designed a NIR fluorescent probe for monitoring the endogenous production of H_2S in living cells.The designed probe showed significant NIR fluorescence turn-on response to H_2S with high selectivity,enabling the sensitive detection H_2S.Importantly,the probe could be applied in monitoring the endogenous production of H_2S in raw 264.7 macrophages.This study showed that fluvastatin can promote the activity of cystathionineγ-lyase(CSE) for generation H_2S.  相似文献   

12.
Fluorescent probes in the second near‐infrared window (NIR‐II) allow high‐resolution bioimaging with deep‐tissue penetration. However, existing NIR‐II materials often have poor signal‐to‐background ratios because of the lack of target specificity. Herein, an activatable NIR‐II nanoprobe for visualizing colorectal cancers was devised. This designed probe displays H2S‐activated ratiometric fluorescence and light‐up NIR‐II emission at 900–1300 nm. By using this activatable and target specific probe for deep‐tissue imaging of H2S‐rich colon cancer cells, accurate identification of colorectal tumors in animal models were performed. It is anticipated that the development of activatable NIR‐II probes will find widespread applications in biological and clinical systems.  相似文献   

13.
Near‐infrared (NIR) fluorescent dyes with favorable photophysical properties are highly useful for bioimaging, but such dyes are still rare. The development of a unique class of NIR dyes via modifying the rhodol scaffold with fused tetrahydroquinoxaline rings is described. These new dyes showed large Stokes shifts (>110 nm). Among them, WR3, WR4, WR5, and WR6 displayed high fluorescence quantum yields and excellent photostability in aqueous solutions. Moreover, their fluorescence properties were tunable by easy modifications on the phenolic hydroxy group. Based on WR6, two NIR fluorescent turn‐on probes, WSP‐NIR and SeSP‐NIR, were devised for the detection of H2S. The probe SeSP‐NIR was applied in visualizing intracellular H2S. These dyes are expected to be useful fluorophore scaffolds in the development of new NIR probes for bioimaging.  相似文献   

14.
A new label‐free fluorescence turn‐on strategy for highly sensitive biosensing has been developed. A negatively charged perylene probe was synthesized. Polycations could induce aggregation of the perylene probe through noncovalent interactions and the fluorescence of the probe’s monomer was efficiently quenched. Upon addition of a single‐stranded nucleic acid, competitive binding of the negatively charged nucleic acid (a polyanion) to the cationic polymer resulted in the release of a monomer and thus a turn‐on fluorescence signal was detected. Without the use of any amplification techniques, a detection limit of 2 pM DNA was obtained. Based on these results, an assay strategy for the highly sensitive detection of alkaline phosphatase (ALP) activity has been demonstrated. λ Exonuclease (λ exo) could degrade 5′‐phosphorylated single‐stranded DNA. However, when the DNA sample was treated with ALP, the phosphate functional group was removed by ALP and it could no longer be degraded by λ exo. Binding of the DNA to the perylene probe–polycation complex resulted in a turn‐on fluorescence signal, which could be used for sensing of ALP. The method is highly sensitive, a limit of detection as low as 0.02 mU mL?1 ALP was obtained. Our method is simple, convenient, highly sensitive, and inexpensive.  相似文献   

15.
Abstract : It is well known that copper ions play a critical role in various physiological processes. However, a variety of human diseases are tightly correlated with copper overload. Although there are numerous fluorescent probes capable of detecting copper ions, most of them are “turn‐off” probes owing to copper (II) ions fluorescence quenching effect, resulting in poor sensitivity. Herein, a novel “turn‐on” near‐infrared (NIR) fluorescent probe PZ‐N based on phenoxazine was designed and synthesized for the selective detection of copper (II) ions (Cu2+). Upon the addition of Cu2+, the probe could quickly react with Cu2+ and emit strong fluorescence, along with colour change from colourless to obvious blue. Moreover, the probe PZ‐N showed good water solubility, high selectivity, and excellent sensitivity with low limit of detection (1.93 nM) towards copper (II) ions. More importantly, PZ‐N was capable of effectively detecting Cu2+ in living cells.  相似文献   

16.
McWhorter S  Soper SA 《Electrophoresis》2000,21(7):1267-1280
As capillary electrophoresis continues to focus on miniaturization, either through reducing column dimensions or situating entire electrophoresis systems on planar chips, advances in detection become necessary to meet the challenges posed by these electrophoresis platforms. The challenges result from the fact that miniaturization requires smaller load volumes, demanding highly sensitive detection. In addition, many times multiple targets must be analyzed simultaneously (multiplexed applications), further complicating detection. Near-infrared (NIR) fluorescence offers an attractive alternative to visible fluorescence for critical applications in capillary electrophoresis due to the impressive limits of detection that can be generated, in part resulting from the low background levels that are observed in the NIR. Advances in instrumentation and fluorogenic labels appropriate for NIR monitoring have led to a growing number of examples of the use of NIR fluorescence in capillary electrophoresis. In this review, we will cover instrumental components used to construct ultrasensitive NIR fluorescence detectors, including light sources and photon transducers. In addition, we will discuss various types of labeling dyes appropriate for NIR fluorescence and finally, we will present several applications that have used NIR fluorescence in capillary electrophoresis, especially for DNA sequencing and fragment analysis.  相似文献   

17.
The sensitive detection of thiols including glutathione and cysteine is desirable owing to their roles as indispensable biomolecules in maintaining intracellular biological redox homeostasis. Herein, we report the design and synthesis of SEluc‐1 (s ulfinate e ster luc iferin), a chemoselective probe exhibiting a ratiometric and turn‐on response towards thiols selectively in fluorescence and bioluminescence, respectively. The probe, which was designed based on the “caged” luciferin strategy, displays excellent selectivity, high signal/noise ratio (>240 in the case of bioluminescence), and a biologically relevant limit of detection (LOD, 80 nm for cysteine), which are all desirable traits for a sensitive bioluminescent sensor. SEluc‐1 was further applied to fluorescence imaging of thiol activity in living human cervical cancer HeLa cell cultures, and was successfully able to detect fluctuations in thiol concentrations induced by oxidative stress in a bioluminescent assay utilizing African green monkey fibroblast COS‐7 cells and human breast adenocarcinoma MCF‐7 cells.  相似文献   

18.
Enzyme-activatable near-infrared (NIR) fluorescent probes and photosensitizers (PSs) have emerged as promising tools for molecular imaging and photodynamic therapy (PDT). However, in living organisms selective retention or even enrichment of these reagents after enzymatic activation at or near sites of interest remains a challenging task. Herein, we integrate non-covalent and covalent retention approaches to introduce a novel “1-to-3” multi-effect strategy—one enzymatic stimulus leads to three types of effects—for the design of an enzyme-activatable NIR probe or PS. Using this strategy, we have constructed an alkaline phosphatase (ALP)-activatable NIR fluorogenic probe and a NIR PS, which proved to be selectively activated by ALP to switch on NIR fluorescence or photosensitizing ability, respectively. Additionally, these reagents showed significant enrichment (over 2000-fold) in ALP-overexpressed tumor cells compared to the culture medium, accompanied by massive depletion of intracellular thiols, the major antioxidants in cells. The investigation of this ALP-activatable NIR PS in an in vivo PDT model resulted in complete suppression of HeLa tumors and full recovery of all tested mice. Encouragingly, even a single administration of this NIR PS was sufficient to completely suppress tumors in mice, demonstrating the high potential of this strategy in biomedical applications.  相似文献   

19.
Lu Chen  Heyou Han 《Mikrochimica acta》2014,181(13-14):1485-1495
Near-infrared quantum dots (NIR QDs) represent a powerful material and diagnostic tool owing to their long emission wavelength which extends into the near-infrared region where permeation depths are much larger and where the intrinsic absorbance and autofluorescence of tissue is much smaller compared to shortwave emitting QDs. We are reviewing here recent (2008–2013) methods for the preparation of NIR QDs, their (bio)chemical modifications, and their applications. The article is subdivided into the following sections: (a) Synthesis of NIR QDs; (b) modification of NIR QDs and probe preparation; (c) applications of NIR QDs (with subsections on fluorescence quenching and fluorescence enhancement-based bioanalytical detection, on fluorescence bioimaging, on uses in photovoltaic cells and solar cells, and on molecular detection based on electrogenerated chemiluminescence). We finally make conclusions and discuss current challenges, trends, and future applications. The review contains 119 references. Figure
This review systematically presents the development, preparation methods, modifications and bioapplications of Near-infrared quantum dots (NIR QDs). The review contains 126 references.  相似文献   

20.
The requirement for nitric oxide (NO) of lysosomes has motivated the development of a sophisticated fluorescent probe to monitor the distribution of this important biomolecule at the subcellular level in living cells. A near‐infrared (NIR) fluorescent Si‐rhodamine (SiRB)‐NO probe was designed based on the NO‐induced ring‐opening process of Si‐rhodamine. The probe exhibits fast chromogenic and fluorogenic responses, and high sensitivity and selectivity toward trace amounts of NO. Significantly, the spirolactam in Si‐rhodamine exhibits very good tolerance to H+, which in turn brings extremely low background fluorescence not only in the physiological environment but also under acidic conditions. The stability of the highly fluorescent product in acidic solution provides persistent fluorescence emission for long‐term imaging experiments. To achieve targeted imaging with improved spatial resolution and sensitivity, an efficient lysosome‐targeting moiety was conjugated to a SiRB‐NO probe, affording a tailored lysosome‐targeting NIR fluorescent Lyso‐SiRB‐NO probe. Inheriting the key advantages of its parent SiRB‐NO probe, Lyso‐SiRB‐NO is a functional probe that is suited for monitoring lysosomal NO with excellent lysosome compatibility. Imaging experiments demonstrated the monitoring of both exogenous and endogenous NO in real time by using the Lyso‐SiRB‐NO probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号