首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of dodecyltrimethylammonium bromide (DTAB) onto natural muscovite mica and a synthetic expandable mica (EM) in aqueous solution has been investigated using both microscopic and macroscopic surface characterization techniques. The electrokinetic properties of the surfaces were monitored as a function of the concentration of DTAB using atomic force microscopy and microelectrophoresis. The adsorption isotherm of DTAB on EM was measured up to a solution concentration just below the critical micelle concentration of the surfactant. The thickness of the adsorbed layer on EM was determined using X-ray diffraction. Results indicate that the adsorbed layer consists of molecules lying quite flat on the mica surface at low concentrations and adsorbed in interleaved aggregate structures at concentrations approaching the critical micelle concentration of the surfactant in solution. Copyright 2001 Academic Press.  相似文献   

2.
Ultramicroelectrode (UME) voltammetry is introduced to study the first-step adsorption of dodecyltrimethylammonium bromide (DTAB) solutions on silica wafer surfaces. This method is based on the exchange reaction of the surfactant molecules with hydrogen ions (H+) on the surfaces. In the first-step adsorption process, when a surfactant molecule is adsorbed to the hydroxylated silica surfaces, a H+ will be displaced. Therefore, H+ concentration will change with the adsorption process until it reaches saturation of the first-step adsorption. The molar adsorption amount of DTAB (mol m−2) before critical micelle concentration (CMC) can be calculated from the change in H+ concentration. The following adsorption process at higher surfactant concentrations is dominated by hydrophobic forces. Consequently, the H+ concentrations do not change with the adsorption process any more, which makes the measurement uninfluenced by the following hydrophobic adsorption process. The adsorption isotherms of DTAB on silica wafer surfaces under different pH are measured with this method. It is found that all the adsorption isotherms exhibit asymptote (L) shape and the equilibrium molar adsorption amounts increase with increasing the pH of the solution. These results indicate that H+ not only change the surface charge but also compete with surfactant for adsorption at higher proton concentrations.  相似文献   

3.
Abstract

Due to the important use of pesticide formulation, it is necessary to make it clear how ionic surfactant effect the wettability at leaf surface. In this work, we used the sessile drop method to study the wettability of SDS and DTAB on wheat leaf surfaces at different leaf stages, and reveal the relationship between surfactants structures and leaf stages of wheat leaf surfaces on wettability behavior. Results showed that few surfactant molecules adsorbed at the interface at low concentrations. With the concentration increased, the surfactant replaced the air layer partially within the nano/micro structure of leaf surfaces. When the concentration exceeded to CMC, the adsorption of surfactant molecules was saturated at both air-liquid interface and solid-liquid interface, the wetting state was still the transitional state between Cassie-Baxter’s and Wenzel’s state. In all concentrations, the adhesional tension and surface tension showed the linear relationship and the slope values were all below ?1, suggesting there were more surfactant molecules adsorbed at the solid-liquid interface than the liquid-air interface. As SDS is a common wetting agent and DTAB is a common fungicide in agrochemical, this study will provide potential guidance in practical application of pesticide solutions in leaf surface wetting.  相似文献   

4.
Adsorption of surfactants on solids is affected by the intermolecular packing in the adsorbed layer besides the driving forces. The adsorption behavior of a double-chain surfactant on silica is studied here along with that of the single-chain one. Comparison of adsorption of these two surfactants is warranted since while the single-chain surfactants form spherical micelles, the double-chain ones form bilayered vesicles in solution. While the adsorption of the single-chain surfactant reaches the plateau in a wide concentration range, the adsorption of the double-chain one increases sharply in a concentration range 10−5 mol/L up to the plateau. The single chain is found to form 1.5 monolayers under saturation coverage suggesting adsorption with reverse orientation at high concentration. In contrast, the adsorption of the double-chain surfactant under saturation coverage is equivalent to a 0.9 monolayer. Fluorescence tests revealed the hydrophobicity change of the surface with increase in adsorption. However, the hydrophobicity tests show the solid surface to be hydrophilic in this range; the double-chain surfactant is proposed to form a partial bilayer.  相似文献   

5.
The redox reaction between tris(1,10-phenanthroline)iron(II), [Fe(phen)3]2+, and azido-pentacyanocobaltate(III), [Co(CN)5N3]3? was investigated in three cationic surfactants: dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) in the presence of 0.1?M NaCl at 35°C. Second-order rate constant in the absence and presence of surfactant, kw and kψ, respectively, were obtained in the concentration ranges DTAB?=?0???4.667?×?10?4?mol?dm?3, TTAB?=?0–9.364?×?10?5?mol?dm?3, CTAB?=?0???6.220?×?10?5?mol?dm?3. Electron transfer rate was inhibited by the surfactants with premicelllar activity. Inhibition factors, kw/kψ followed the trend CTAB?>?TTAB?>?DTAB with respect to the surfactant concentrations used. The magnitudes of the binding constants obtained suggest significant electrostatic and hydrophobic interactions. Activation parameters ΔH, ΔS, and Ea have larger positive values in the presence of surfactants than in surfactant-free medium. The electron transfer is proposed to proceed via outer-sphere mechanism in the presence of the surfactants.  相似文献   

6.
Isotherms for the adsorption of β-naphthol from a buffered aqueous solution of 0.5 M K2SO4 onto graphite were detemrined over a range of potential of 1.27 V. The adsorbent was a packed bed of ?100 + 120 mesh graphite powder. Sufficient surface area was available to calculate accurately the amount adsorbed by measuring spectrophotometrically the change in adsorbate concentration in the bulk solution.At all potentials, a Langmuir adsorption isotherm, modified for the displacement of solvent molecules, was followed up to 60–65% of monolayer coverage. The ratio of projected areas of β-naphthol and water molecules was consistent with the experimentally derived number of solvent molecules displaced, six. The largest amount of adsorption observed, 2.5×10?10 mol cm?2, agreed with the calculated monolayer coverage of β-naphthol molecules lying in flat orientation on the graphite surface. Adsorption increased at more positive potentials. Over the range of potential investigated, the adsorbability constant increased sixfold. Desorption was only partially reversible.  相似文献   

7.
Self-assembled Gemini surfactant film-mediated dispersion stability   总被引:1,自引:0,他引:1  
The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).  相似文献   

8.
The composition and morphology of mixed adsorbed layers comprising one of several poly(oxyethylene) alkyl ether nonionic surfactants, C(i)E(j), and two cationic surfactants-dodecyltrimethylammonium bromide (DTAB) and tetradecyltriethylammonium bromide (TTeAB)-at the mica/solution interface have been studied using depletion adsorption and atomic force microscopy. The nonionic surfactants do not themselves adsorb onto mica, but can coadsorb with a cationic surfactant. The extent of their hydrophobic association with the adsorbed cationic surfactant depends on alkyl chain length, while the adsorbed layer morphologies are sensitive to the number of ethoxy groups. Nonionic surfactants with headgroups containing less than eight ethylene oxide units decrease the adsorbed aggregate curvature, gradually transforming globular TTeAB or cylindrical DTAB adsorbed aggregates into a rod, mesh, or bilayer structure. Those with larger headgroups favor globular aggregates. The mechanism by which the nonionic surfactant modifies the adsorbed morphology is the formation of defects in the form of cylinder end-caps or branch-points, leading to adsorbed layer compositions that differ from ideal mixing predictions. All mixed adsorbed films become saturated with the nonionic component when the capacity of the aqueous side of the adsorbed layer is reached.  相似文献   

9.
Perfluorosulfonic acid ionomer (PFSA, specifically Nafion at EW = 975 g/mol) was visualized at the single molecule level using atomic force microscopy (AFM) in liquid. The diluted commercial Nafion dispersion shows an apparent M(w) = 1430 kg/mol and M(w)/M(n) = 3.81, which is assigned to chain aggregation. PFSA aggregates, imaged on mica and HOPG during adsorption from EtOH-H(2)O solvent at pH(e) 3.0 (below isoelectric point), showed a stable, segmented rod-like conformation. This structure is consistent with earlier NMR, SAXS/SANS, and TEM results that support a stiff helical Nafion conformation with long persistence length, a sharp solvent-polymer interface, and an extension of the sulfonated side chain into solution. Adsorption of Nafion structures on HOPG was observed at even higher pH(e) from EtOH due to screening of the repulsive electrostatic interaction in lower dielectric constant solvent, while the chain adopted an expanded coil conformation. These measurements provided direct evidence of the chain aggregation in EtOH-H(2)O solution and revealed their equilibrium conformations for adsorption on two model surfaces, highly ordered pyrolitic graphite (HOPG) and mica. The commercial Nafion dispersion was autoclaved at 0.10% w/w in nPrOH/H(2)O = 4:1 v/v solvent at 230 °C for 6 h to give a single-chain dispersion with M(w) = 310 kg/mol and M(w)/M(n) = 1.60. The autoclaved chains adopt an electrostatically stabilized compact globule conformation as observed by AFM imaging of the single PFSA molecules after rapid deposition on mica and HOPG at a low surface coverage.  相似文献   

10.
The role of mineral surface chemistry in modified dextrin adsorption   总被引:1,自引:0,他引:1  
The adsorption of two modified dextrins (phenyl succinate dextrin--PS Dextrin; styrene oxide dextrin--SO Dextrin) on four different mineral surfaces has been studied using X-ray photoelectron spectroscopy (XPS), in situ atomic force microscopy (AFM) imaging, and captive bubble contact angle measurements. The four surfaces include highly orientated pyrolytic graphite (HOPG), freshly cleaved synthetic sphalerite (ZnS), and two surfaces produced through surface reactions of sphalerite: one oxidized in alkaline solution (pH 9, 1 h immersion); and one subjected to metal ion exchange between copper and zinc (i.e. copper activation: exposed to 1×10(-3) M CuSO(4) solution for 1 h). XPS measurements indicate that the different sphalerite surfaces contain varying amounts of sulfur, zinc, oxygen, and copper, producing substrates for polymer adsorption with a range of possible binding sites. AFM imaging has shown that the two polymers adsorb to a similar extent on HOPG, and that the two polymers display very different propensities for adsorption on the three sphalerite surface types, with freshly cleaved sphalerite encouraging the least adsorption, and copper activated and oxidized sphalerite encouraging significantly more adsorption. Contact angle measurements of the four surfaces indicate that synthetic sphalerite has a low contact angle upon fracture, and that oxidation on the timescale of one hour substantially alters the hydrophobicity. HOPG and copper-activated sphalerite were the most hydrophobic, as expected due to the carbon and di/poly-sulfide rich surfaces of the two samples, respectively. SO Dextrin is seen to have a significant impact on the wettability of HOPG and the surface reacted sphalerite samples, highlighting the difficulty in selectively separating sphalerite from carbonaceous unwanted minerals in flotation. PS Dextrin has the least effect on the hydrophobicity of the reacted sphalerite surfaces, whilst still significantly increasing the wettability of graphite, and thus has more potential for use as a polymer depressant in this separation.  相似文献   

11.
The aggregates of aliphatic (AL-PE) and aromatic polyester (AR-PE) hyperbranched dendrimers were imaged by tapping mode atomic force microscopy (AFM). The second and third generations of AL-PE dendrimers were adsorbed on mica in large aggregates of 150- and 166-nm diameters with little heights (ca. 1–2 nm). The origin of such flattened aggregates is attributed to their favorable adsorption on mica in view of the presence of –OH surface groups. AR-PE did not show such flattened aggregates instead small aggregates of 63 nm were observed in an organized manner beaving a cavity in the center of each aggregate. The organized aggregates of AR-PE with smaller dimension than AL-PE are ascribed to less favorable adsorption of the latter on mica in view of its stronger hydrophobicity.  相似文献   

12.
Molecular dynamics simulations of sodium dodecyl sulfate (SDS) molecules on a graphite surface are presented. The simulations were conducted at low and high surface coverage to study aggregation at the water/graphite interface. Results showed that at low surface coverage, the SDS molecules form hemicylindrical aggregates, in agreement with AFM experiments, whereas at high surface coverage, the surfactants form full cylinders. The latter aggregates have not been reported in systems of SDS on hydrophobic substrates, such as graphite. The unexpected results are explained in terms of a water layer adsorbed at the solid surface which was the responsible for the formation of these aggregates. Moreover, the SDS tails in the full cylindrical configuration became straighter than those of the hemicylindrical aggregate. Hydrogen bond formation between water and surfactant head groups was also studied, and it was found that they did not depend on the surfactant concentration.  相似文献   

13.
DNA origami nanostructures (DONs) are promising substrates for the single-molecule investigation of biomolecular reactions and dynamics by in situ atomic force microscopy (AFM). For this, they are typically immobilized on mica substrates by adding millimolar concentrations of Mg2+ ions to the sample solution, which enable the adsorption of the negatively charged DONs at the like-charged mica surface. These non-physiological Mg2+ concentrations, however, present a serious limitation in such experiments as they may interfere with the reactions and processes under investigation. Therefore, we here evaluate three approaches to efficiently immobilize DONs at mica surfaces under essentially Mg2+-free conditions. These approaches rely on the pre-adsorption of different multivalent cations, i.e., Ni2+, poly-l-lysine (PLL), and spermidine (Spdn). DON adsorption is studied in phosphate-buffered saline (PBS) and pure water. In general, Ni2+ shows the worst performance with heavily deformed DONs. For 2D DON triangles, adsorption at PLL- and in particular Spdn-modified mica may outperform even Mg2+-mediated adsorption in terms of surface coverage, depending on the employed solution. For 3D six-helix bundles, less pronounced differences between the individual strategies are observed. Our results provide some general guidance for the immobilization of DONs at mica surfaces under Mg2+-free conditions and may aid future in situ AFM studies.  相似文献   

14.
Various experimental methods were used to investigate interaction between polymer and anionic/nonionic surfactants and mechanisms of enhanced oil recovery by anionic/nonionic surfactants in the present paper. The complex surfactant molecules are adsorbed in the mixed micelles or aggregates formed by the hydrophobic association of hydrophobic groups of polymers, making the surfactant molecules at oil-water interface reduce and the value of interfacial tension between oil and water increase. A dense spatial network structure is formed by the interaction between the mixed aggregates and hydrophobic groups of the polymer molecular chains, making the hydrodynamic volume of the aggregates and the viscosity of the polymer solution increase. Because of the formation of the mixed adsorption layer at oil and water interface by synergistic effect, ultra-low interfacial tension (~2.0?×?10?3 mN/m) can be achieved between the novel surfactant system and the oil samples in this paper. Because of hydrophobic interaction, wettability alteration of oil-wet surface was induced by the adsorption of the surfactant system on the solid surface. Moreover, the studied surfactant system had a certain degree of spontaneous emulsification ability (D50?=?25.04?µm) and was well emulsified with crude oil after the mechanical oscillation (D50?=?4.27?µm).  相似文献   

15.
Adsorption of fibrinogen from aqueous solutions on mica was studied using AFM and in situ streaming potential measurements. In the first stage, bulk physicochemical properties of fibrinogen and the mica substrate were characterized for various ionic strength and pH. The zeta potential and number of uncompensated (electrokinetic) charges on the protein surfaces were determined from microelectrophoretic measurements. Analogously, using streaming potential measurements, the electrokinetic charge density of mica was determined for pH range 3-10 and the NaCl background electrolyte concentration of 10(-3) and 10(-2) M. Next, the kinetics of fibrinogen adsorption at pH 3.5 and 7.4 in the diffusion cell was studied using a direct AFM determination of the number of molecules per unit area of the mica substrate. Then, streaming potential measurements were performed to determine the apparent zeta potential of fibrinogen-covered mica for different pH and ionic strength in terms of its surface concentration. A quantitative interpretation of these streaming potential measurements was achieved in terms of the theoretical model postulating a side-on adsorption of fibrinogen molecules as discrete particles. On the basis of these results, the maximum coverage of fibrinogen Θ close to 0.29 was predicted, in accordance with previous theoretical predictions. It was also suggested that anomalous adsorption for pH 7.4, where fibrinogen and the mica substrate were both negatively charged, can be explained in terms of a heterogeneous charge distribution on fibrinogen molecules. It was estimated that the positive charge was 12 e (for NaCl concentration of 10(-2) M and pH 7.4) compared with the net charge of fibrinogen at this pH, equal to -21 e. Results obtained in this work proved that the coverage of fibrinogen can be quantitatively determined using the streaming potential method, especially for Θ < 0.2, where other experimental methods become less accurate.  相似文献   

16.
The contact angles of aqueous solutions of a polymeric surfactant namely hydrophobically modified inulin (INUTEC®SP1) were measured on hydrophilic and hydrophobised quartz glass surfaces using the sessile drop technique. These measurements showed a large difference (>10°) between the advancing contact angle θ 1 (that is measured immediately after placing the drop on the surface) and the constant contact angle θ 2 (that is measured 30 minutes after placing the drop). In all the results only the contact angle θ 2 was subsequently measured. θ versus INUTEC®SP1 concentration C s curves were obtained at various NaCl concentrations both on hydrophilic and hydrophobic glass surfaces. On hydrophilic glass surface the θ versus C s curves showed a maximum at a concentration range of 10–6 to 2?×?10–5 mol dm-3 INUTEC®SP1. These curves were shifted to lower values as the NaCl concentration was increased. On such hydrophilic surface the INUTEC®SP1 molecule adsorbs with the polyfructose loops and tails oriented towards the surface leaving the alkyl chains in solution. Saturation adsorption with this orientation occurs at 2?×?10–5 mol dm-3 INUTEC®SP1. However, the contact angles remain quite small (<18°) indicating the presence of several hydrophilic glass patches uncovered by surfactant molecules. At C s?>?2?×?10–5 mol dm-3 θ decreases with further increase of the INUTEC®SP1 concentration reaching 5° at the Critical Association Concentration (CAC) of the polymer. This indicates the formation of a bilayer of INUTEC®SP1 molecules with the alkyl chains hydrophobically attached to those of the first layer. On a hydrophobic glass surface, adsorption of INUTEC®SP1 occurs by multi-point attachment with the alkyl chains on the surface leaving the hydrophilic polyfructose loops and tails dangling in solution. This results in a gradual decrease of the contact angle with increase in INUTEC®SP1 concentration, reaching a plateau value (>85°) between 2?×?10–5 and 2?×?10–4 mol dm-3. The large contact angles obtained on adsorption of the polymeric surfactant on a hydrophobic surface indicate the presence of several uncovered hydrophobic patches. These results give a reasonable picture of the adsorption and orientation of the INUTEC®SP1 molecules on both hydrophilic and hydrophobic solid surfaces.  相似文献   

17.
Physicochemical properties of bovine plasma fibrinogen (Fb) in electrolyte solutions were characterized. These comprised the diffusion coefficient (hydrodynamic radius), determined by the DLS method, electrophoretic mobility and the isoelectric point. The hydrodynamic radius of Fb was 12 nm for pH<5. The number of uncompensated (electrokinetic) charges on the protein N c was calculated from the electrophoretic mobility data. It was found that for pH<5.8 the electrokinetic charge was positive, independently of the ionic strength and negative for pH>5.8. For pH=3.5 the value of N c , was 26 for 10?3 M. Similar electrokinetic measurements were performed for the mica substrate using the streaming potential cell. It was shown that for pH=3.5 and 10?3 M, the zeta potential of mica remained negative (?50 mV). This promoted an irreversible, electrostatically driven adsorption of Fb, which was confirmed in experiments carried out under diffusion-controlled transport. The surface concentration of Fb on mica was determined directly by AFM counting. By adjusting the time of adsorption, Fb monolayers of desired coverage were produced. Independently, the presence of Fb on mica was determined quantitatively by the colloid enhancement method, in which negatively charged latex particles were used, having the diameter of 800 nm. It was found that for Fb coverage below 0.05 the method was more sensitive than other indirect methods. The experimental data obtained in latex deposition experiments were adequately interpreted in terms of the random site model used previously for polyelectrolytes. It was shown that adsorption sites consisted of a cluster of two Fb molecules. It was concluded that the colloid enhancement method can be successfully used for detecting the presence of proteins at solid substrates and to determine the uniformity of monolayers in the nanoscale.  相似文献   

18.
The self-associating structures at the solid-liquid interface of three nonionic trisiloxane surfactants ((CH3)3SiO)2Si(CH3)(CH2)3(OCH2CH2)n OH (n = 6, 8, and 12), or BEn, are studied as a function of substrate properties by atomic force microscopy (AFM) imaging and force measurement. These trisiloxane surfactants are known as superwetters, which promote rapid spreading of dilute aqueous solutions on low-energy surfaces. This study also attempts to relate the BEn surface aggregate structures at the solid-liquid interface to their superwetting behavior. Four substrates are used in the study: muscovite mica, highly oriented pyrolytic graphite, and oxidized silicon wafer with and without a full monolayer of self-assembled n-octadecyltrichlorosilane (OTS). The concentration of BEn is fixed at 2 times the critical aggregation concentration (CAC). The BEn surfactants are only weakly attracted to hydrophilic surfaces, more on oxidized silicon than on mica. All three form ordinary planar monolayers on HOPG and OTS-covered oxidized silicon. The significance of surfactant adsorption on the AFM tip is investigated by comparing the force curves obtained by tips with and without thiol modification. The surface aggregate structures of the BEn surfactants correlate with their bulk structures and do not exhibit anomalous adsorption behavior. The adsorption behavior of the BEn superwetters is similar to that of the CmEn surfactants. Thus, our results confirm previous work showing that superwetting shares its main features with other classes of surfactants.  相似文献   

19.
We have studied the surface complexation of DNA with a cationic surfactant (DTAB) using a combination of methods: dynamic surface tension, ellipsometry and Brewster angle microscopy. Below the surfactant critical aggregation concentration (cac), complexation occurs only at the surface, and the results are consistent with neutralization of the surfactant charges by the free polymer ions. Above the cac, surfactant starts to bind cooperatively to DNA in the bulk, and adsorption of the preformed hydrophobic surfactant DNA aggregate is now possible, leading to thick surface layers. At still higher concentrations of surfactant (still below saturation of binding in the bulk), there is decrease in adsorption due to competition with bulk aggregates. Finally, as surfactant concentration is increased still further, bulk aggregates become less soluble and large amounts are adsorbed, forming a surface layer, which is solid-like and brittle.  相似文献   

20.
A model for the adsorption of ionic surfactants on oppositely charged solid surfaces of uniform charge density is developed. The model is based on the assumption that, on the solid surface, adsorbed surfactant monomers, monolayered and bilayered surfactant aggregates of different sizes and specifically adsorbing ions of added electrolyte constitute a mixture of hard discs. It means that only excluded area interactions between the surface discs are taken into account. To avoid a rapid two-dimensional condensation of the adsorbed surfactant the potential energy per molecule in the surface aggregates, which is a sum of chemical and electrostatic interactions, is assumed to decrease linearly with the increasing aggregate size. The electrostatic interactions of ionic species with the charged solid surface are described in terms of the Guy-Chapman theory of the double layer formation. The appropriate equations for adsorption isotherms of surfactant and electrolyte ions are derived and used to predict the experimental adsorption isotherms of DTAB on the precipitated silica at two different salt concentrations in the aqueous solution, On the basis of the obtained results the evolution of the adsorbed phase structure and the charge of silica particles with an increasing surface coverage is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号