首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Wettablity alteration of rock surface is an important mechanism for surfactant-based enhanced oil recovery (EOR) processes. Two salt and temperature-tolerant surfactant formulations were developed based on the conditions of high temperature (97–120°C) and high salinity (20 × 104 mg/L) reservoirs where a surfactant-based EOR process is attempted. Both the two sufactant formulations can achieve ultralow interfacial tension level (≤10?3 mN/m) with crude oil after aging for 125 days at reservoir conditions. Wettability alteration of core slices induced by the two surfactant formulations was evalutated by measuring contact angles. Core flooding experiments were carried out to study the influence of initial rock wettabilities on oil recovery in the crude oil/surfactant/formation water/rock system. The results indicated that the two formulations could turn oil-wet core slices into water-wet at 90–120°C and 20 × 104 mg/L salinity, while the water-wet core slices retained their hydrophilic nature. The core flooding experiments showed that the water-wet cores could yield higher oil recovery compared with the oil-wet cores in water flooding, surfactant, and subsequent water flooding process. The two surfactant formulations could successfully yield additional oil recovery in both oil-wet and water-wet cores.  相似文献   

2.
Alkali and alkali/surfactant displacing agents are designed for two kinds of heavy oil. Results of emulsifying capacity, dynamic interfacial tension (IFT) and water-wet core flooding tests show that, although alkaline/surfactant systems exhibit better capacity in emulsification and IFT reduction, oil recovery values of alkaline/surfactant flooding are lower than those of alkaline flooding. Glass-etched micromodel tests further demonstrate that, when alkaline solution penetrates into the oil phase, water streams break into ganglia coating oil film. Water ganglia may be entrapped by narrow throats, consequently presenting a water-oil alternating slug flow. Similar water ganglia also appears in alkaline/surfactant flooding, however, water channeling along the pore surface occurs subsequently, resulting in its relatively lower oil recovery.  相似文献   

3.
Surfactant based enhanced oil recovery (EOR) is an interesting area of research for several petroleum researchers. In the present work, individual and mixed systems of anionic and cationic surfactants consisting of sodium dodecyl sulphate (SDS) and cetyltrimethylammonium bromide (CTAB) in different molar ratios were tested for their synergistic effect on the crude oil-water interfacial tension (IFT) and enhanced oil recovery performance. The combination of these two surfactant systems showed a higher surface activity as compared to individual surfactants. The effect of mixed surfactant systems on the IFT and critical micellar concentration (CMC) is strongly depends on molar ratios of the two surfactant. Much lower CMC values were observed in case of mixed surfactant systems prepared at different molar ratios as compared to individual surfactant systems. The lowest CMC value was found when the molar concentration of SDS was higher than the CTAB. When the individual and mixed surfacant systems were tested for EOR performance through flooding experiments, higher ultimate oil recovery was obtained from mixed surfactant flooding compared to individual surfactants. Combination of SDS and CTAB or probably other anionic-cationic surfactants show synergism with substantial ability to reduce crude oil water IFT and can be a promising EOR method.  相似文献   

4.
Solubilization of dodecanol-limonene binary oil mixtures has been studied in saturated Winsor type I and III sodium dihexyl sulfosuccinate microemulsions. The systems showed different oil solubilization behavior below and above dodecanol volume fraction 0.2. Below 0.2 dodecanol volume fraction regular Winsor type microemulsions formed. The oil solubilization was characterized in this concentration range by the optimum salinity and the maximum characteristic length. Dodecanol showed Langmuirian-type surface excess adsorption at the vicinity of the surfactant layer. Variation of the optimum salinity and middle phase characteristic length with increasing dodecanol concentration could be linked to changes in the dodecanol surface excess. These relationships were used to develop new mathematical models for the optimum salinity and characteristic length as a function of oil phase composition. Both models yield excellent agreement with the data. Above dodecanol volume fraction 0.2 regular Winsor type III microemulsions are not formed. Therefore our new models are not applicable in this concentration range.  相似文献   

5.
Surfactant synthesis was realized from Algerian crude oil and petroleum fractions. To predict the composition (wt%) in paraffins, naphtenes, and aromatics, the crude oil and petroleum fractions were first characterized using the n-d-PA empirical method of Robert. The characterization showed a good level in aromatics compounds which give high yield in the sulfonation reaction by oleum. The synthesized surfactants were characterized by spectroscopic techniques (UV, FTIR) and by critical micelle concentration (CMC), Krafft temperature, solubility (in aqueous and in salt solution), molecular weight, and matter actives (%) measurements. The formulation of microemulsion using synthesized surfactant from plat format petroleum fraction showed a Winsor III type system. The effect of salinity demonstrates the existence of an optimal value of NaCl concentration for which the interfacial tension takes the lowered value (10?4 mN/m). Viscosity measurements confirm that the formulated microemulsion has a Newtonian behavior.  相似文献   

6.
The microemulsion phases of the Winsor system consisting of 47 wt% brine, 2 wt% sodium dodecylsulphate, 4 wt% butanol and 47 wt% toluene were investigated by means of 2H NMR relaxation on the surfactant which was specifically deuterated in the α-position. The measurements were obtained at 20°C for salinities varying from 3 to 10 g NaCl / 100 ml H2O. From a simple relaxation model the transverse relaxation rates were transformed into sizes of (spherical) droplets, which were compared with the droplet sizes obtained from the sample compositions in the Winsor I and II regions. For the Winsor III region, the transverse relaxation rates could be rationalised in terms of a structural model based on a bicontinuous cubic liquid crystalline phase. Moreover, by invoking previously obtained data, we show that the dependence on salinity of the water, oil and surfactant self-diffusion coefficients can also be explained within the same framework.  相似文献   

7.
Dodecanesulfonates (isomer mixtures) have been synthesized by the process developed in our laboratory. First, pseudoternary phase diagrams of water or (brine) decane/dodecanesulfonates-butan-1-ol systems were drawn and compared with those of a commercial sample (Hostapur 60). In the presence of NaCl, a three-phase region (Winsor III) appears for the two systems, and is larger with the home-made surfactants. This region is interesting in enhanced oil recovery because it leads to very low interfacial tensions. Then, the behavior of the Winsor III region was investigated as a function of the alcohol/surfactant mass ratio (C/T). At a constant salinity (2.5 mass% NaCl) a value of 2 for C/T gives the best compromise for a larger WIII region with both systems. For this ratio, optimal salinity values of 1.55 and 1.65 mass% for our sample and Hostapur 60, were found, respectively.  相似文献   

8.
The determination of anionic surfactant contents in multiphase microemulsions, based on the extraction-spectrophotometric method, has been carried out. The multiphase microemulsion system we studied is composed of sodium octyl sulfate (SOS), n-hexanol, n-decane, and brine. The system shows Winsor type phase-transitions (Winsor I type Winsor III type Winsor II type) with changing salinity. We found that the extraction-spectrophotometric method used here is very useful for the determination of anionic surfactants in any microemulsion phases: the partition ratios of SOS in two different phases change continuously within the salinity region at which the phase transition takes place.  相似文献   

9.
Demands for hydrocarbon production have been increasing in recent decades. As a tertiary production processes, chemical flooding is one of the effective technologies to increase oil recovery of hydrocarbon reservoirs. Retention of surfactants is one of the key parameters affecting the performance and economy of a chemical flooding process. The main parameters contribute to surfactant retention are mineralogy of rock, surfactant structure, pH, salinity, acidity of the oil, microemulsion viscosity, co-solvent concentration, and mobility. Despite various theoretical studies carried out so far, a comprehensive and reliable predictive model for surfactant retention is still found lacking. In this communication, a mathematical method based on machine learning approach, namely, least square support vector machine modeling is evolved for this purpose. To this end, the model was developed and tested using experimental dynamic surfactant retention data over a wide range of conditions. The results show that the developed model provides predictions in good agreement with experimental retention data. Moreover, it is shown that the developed model is capable of simulating the actual physical trend of surfactant retention versus three most important input parameters: total acid number of oil, pH, and mobility ratio. Finally, for detection of the probable doubtful retention data, outlier diagnosis was performed on the whole data set.  相似文献   

10.

The physicochemical properties of initial formulation, that is anionic/amphoteric surfactants mixture SLES/AOS/CAB (sodium lauryl ether sulfate (SLES), α-olefin sulfonates (AOS) and cocamidopropyl betaine (CAB) at ratio 80 : 15 : 5) with nonionic surfactant of amine oxide type (lauramine oxide (AO)) in various concentration (1–5%) were studied. To characterize the surfactants mixture, the critical micelle concentration (CMC), surface tension (γ), foam volume, biodegradability and irritability were determined. This study showed that adding of AO in those mixtures lowered both γ and CMC as well as enhanced SLES/AOS/CAB foaming properties, but did not significantly affect biodegradability and irritability of initial formulation. Moreover, an increase in AO concentration has a meaningful synergistic effect on the initial formulation properties. All those results indicates that a nonionic surfactant of amine oxide type significantly improves the performance of anionic/amphoteric mixed micelle systems, and because of that anionic/amphoteric/nonionic mixture can be used in considerably lower concentrations as a cleaning formulation.

  相似文献   

11.
An ultralow interfacial tension (IFT) oil displacement agent, which was a surfactant combinational system (HCS) with good salt and heat resistance, was synthesized using amphoteric betaine (AMS)/anionic sulfonate (AKS)/nonionic alkyl amide (NIS). The interface tensiometer was used to test the IFT. The results showed that the oil–water IFT could be as low as 10?4 mN/m when the salinity is 10,000~50,000?mg/L, the concentration is 1~5?g/L, and the temperature is 40~80°C. The surfactant system has good emulsification stability. The displacement simulation experiments demonstrated that the increment of the recovery ratio can be up to 14.1%. The surfactant system could meet the demands of site operation.  相似文献   

12.
Alkali/surfactant/polymer (ASP) multisystem flooding technique, which has an expansive application prospect, is one of the enhancing oil recovery (EOR) methods. By adding the organic chromium to the ASP, the molecular structure of polymer was made to change, and the capability of controlling mobility coefficient of ASP was improved. The results showed that multisystem could still keep ultra‐low interfacial tension between the multisystem and crude oil after addition of Cr3+. The resistance factor and residual resistance factor, the indicator which describes the capability of controlling mobility, upgraded strikingly. However its storage modulus and loss modulus, the indicator which describes viscoelasticity, increased. The results of physical simulation experiment indicated that this type of improved ASP could increase the recovery ratio by 4.3% compared to common ASP multisystem.  相似文献   

13.
采用自制的新型磺基甜菜碱两性表面活性剂与相对分子质量2500万的聚丙烯酰胺进行复配,考察了不同温度和矿化度条件下,聚合物对复配溶液表面、界面性能的影响。 采用滴体积法测定了溶液的表面张力,结果表明,加入聚合物使溶液的临界胶束浓度增大,且复配溶液的表面张力大于单独表面活性剂溶液的表面张力。 当聚合物浓度一定,增大溶液矿化度时,体系表面张力增大。 用旋滴型界面张力仪测定了溶液的界面张力,结果表明,增大聚合物浓度,油水界面张力增大,增大溶液矿化度,油水界面张力有所升高。 聚合物质量浓度为1.5 g/L,表面活性剂质量浓度为0.3 g/L时,可使胜利油田孤岛原油和孤东原油的油水界面张力达到超低数量级(10-3 mN/m)。 用分水时间法测定了溶液的乳化性能,结果表明,聚合物浓度增大,分水时间延长,并考察了75、85和95 ℃条件下体系的乳化性能,温度越高,分水时间越短。  相似文献   

14.
Different measurements were conducted to study the mechanisms of enhanced oil recovery (EOR) by surfactant-induced wettability alteration. The adhesion work could be reduced by the surfactant-induced wettability alteration from oil-wet conditions to water-wet conditions. Surfactant-induced wettability alteration has a great effect on the relative permeabilities of oil and water. The relative permeability of the oil phase increases with the increase of the water-wetness of the solid surface. Seepage laws of oil and water are greatly affected by surfactant-induced wettability alteration. Water flows forward along the pore wall in the water-wet rocks and moves forward along the center of the pores in the oil-wet rocks during the surfactant flooding. For the intermediate-wet system, water uniformly moves forward and the contact angle between the oil–water interface and the pore surface is close to 90°. The direction of capillary force is consistent with the direction of water flooding for the water-wet surface. While for the oil-wet surface, the capillary force direction is opposite to the water-flooding direction. The highest oil recovery by water flooding is obtained at close to neutral wetting conditions and the minimal oil recovery occurs under oil-wet conditions.  相似文献   

15.
The uptake of the amphoteric surfactant, cocamidopropyl betaine (CAB) by a sodium montmorillonite clay was studied with respect to concentration and pH. A series of organoclays was prepared in which the basal spacings were found to depend on both parameters. Adjusting the solution pH during preparation influenced the adoption of either 1.8 or 2.0 nm spacing, whereas the 3.9 nm spacing in the same sample was unaffected. The presence of the carboxyl group in the CAB molecule enabled dispersion of the clay at higher pH by which means pure organoclays of high spacing could be obtained, whereas, without dispersing the clay, mixed populations were obtained. The results indicate the optimum parameters for preparing organoclays of desired spacings for use in clay-reinforced nanocomposites.  相似文献   

16.
Three different types of foaming agents including hydrocarbon surfactant TQ01, partial fluorinated surfactant BF01, and per-fluorinated surfactant QF01 exhibited good foaming ability and foam stability under 95°C high temperature and 32,325 ppm salinity conditions. The oil-tolerance ability order with respect to Malaysia Off-shore (MOS) crude oil for surfactant TQ01, BF01, and QF01 is TQ01 < BF01 < QF01. Introduction of polymer into the foam formula could significantly increase foam stability. Different polymers show different abilities of increasing foam stability. Spreading coefficient and entering coefficient are close to zero for surfactant BF01 foaming system and much less than zero for surfactant QF01 foaming system, so the oil-resistance ability of foam generated by surfactant QF01 is the strongest. For surfactant TQ01 foaming system, the calculated spreading coefficient and entering coefficient are greater than zero; therefore, the TQ01 foam system is more sensitive to MOS crude oil and its oil-resistance ability is the poorest. Core flooding test indicated that using the 0.4% BF01 and 0.2% YH1096 combined foaming formula could increase the pressure drop across the porous media significantly, indicating that strong foam was generated in the presence of MOS crude oil.  相似文献   

17.
Although alkaline/surfactant/polymer (ASP) flooding is successfully applied in oil fields, some disadvantages such as scales, corrosion effects, and viscosity reductions of polymer solutions appear. Usage of organic alkalis can avoid or decrease these disadvantages. In this paper, the physicochemical properties, including interfacial tension (IFT), and viscosity, of organic alkali combinational flooding solutions and their effectiveness as enhanced oil recovery agents are investigated. Monoethanolamine (MEA) is the optimal one for decreasing the IFT among the three organic alkalis studied in this paper. Although MEA cannot decrease the IFT as low as NaOH does, it has good compatibility with both surfactant and the polymer hydrolyzed polyacrylamide (HPAM). MEA not only helps a surfactant solution or HPAM/surfactant mixture attain ultralow IFT values, but can also promote better viscosity stability for HPAM or HPAM/surfactant solutions compared to NaOH. Moreover, core flood experiments show that adding MEA can obtain additional tertiary oil recovery of 6%–10% original oil in place (OOIP) on the top of HPAM or HPAM/surfactant flooding, although MEA has a lower enhanced oil recovery than NaOH. The experimental results show that MEA is a good choice to replace NaOH in enhancing heavy oil recovery.  相似文献   

18.
Protein foam was explored as a foaming agent for enhanced oil recovery application in this study. The influence of salinity and oil presence on bulk stability and foamability of the egg white protein (EWP) foam was investigated. The results were compared with those of the classical surfactant sodium dodecyl sulfate (SDS) foam. The results showed that the EWP foam is more stable than the SDS foam in the presence of oil and different salts. Although, the SDS foam has more foamability than the EWP foam, however, at low to moderate salinities (1–3 wt% NaCl), both foam systems showed improvement in foamability. At a NaCl concentration of 4.0 wt% and above, foamability of the SDS foam started to decrease drastically while the foamability of the EWP foam remained the same. The presence of oil has a destabilizing effect on both foams but the EWP foam was less affected in comparison to the SDS foam. Moreover, increasing the aromatic hydrocarbon compound percentage in the added oil decreased the foamability and stability of the SDS foam more than EWP foams. This study suggests that the protein foam could be used as an alternative foaming agent for enhanced oil recovery application due to its high stability compared to the conventional foams.  相似文献   

19.
Nanoemulsions were formed spontaneously by diluting water-in-oil (W/O) or brine-in-oil (B/O) microemulsions of a hydrocarbon (octane), anionic surfactant (Aerosol-OT or AOT) and water or NaCl brine in varying levels of excess brine. The water-continuous nanoemulsions were characterized by interfacial tension, dynamic light scattering, electrophoresis, optical microscopy and phase-behavior studies. The mechanism of emulsification was local supersaturation and resulting nucleation of oil during inversion. For nanoemulsions formed at low salinities with Winsor I phase behavior, octane drops grew from initial diameters of 150-250nm to 480-1000nm over 24h, depending on salinity. Growth was caused by mass transfer but seemed to approach the asymptotic stage of Ostwald ripening described by the Lifshitz-Slyozov-Wagner (LSW) theory only for dilution with salt-free water. Near the higher cross-over salinity (Winsor III), the nanoemulsions showed much slower growth with droplet size consistently remaining below 200nm over 24h and reaching 250nm after 1week. Birefringence indicated the presence of liquid crystal for these conditions, which could have contributed to the slow growth rate. At even higher salinity levels in the Winsor II domain, W/O/W multiple emulsions having drops greater than 1μm in diameter were consistently recorded for the first 5-7h, after which size decreased to values below 1μm. The number and size of internal water droplets in multiple emulsion drops was found to decrease over time, suggesting coalescence of internal droplets with the continuous water phase and mass transfer of water from internal droplets to continuous phase as possible mechanisms of the observed drop shrinkage. Electrophoresis studies showed the nanoemulsions to be highly negatively charged (zeta potentials of -60mV to -120mV). The high charge on octane droplets helped assure stability to flocculation and coalescence, thereby allowing mass transfer to control growth in the Winsor I and III regions.  相似文献   

20.
Severe viscous fingering during water flooding of heavy oil leaves a large amount of oil untouched in the reservoir. Improving sweep efficiency is vital for enhancing heavy oil recovery. This study presented a laboratory study for improving sweep efficiency by alkaline flooding in heavy oil Reservoirs. This included glass-etched micromodel flooding tests, one-dimensional flooding experiments and three-dimensional physical model study. The micromodel tests show that W/O droplet flow plays a prominent role in the alkaline flooding to improve sweep efficiency. There is a minimum alkaline concentration that generates the W/O droplet flow, and the W/O droplet flow is more obvious with the alkaline concentration increasing. A series of flood tests were conducted using 325 mPa · s, 2000 mPa · s, and 3950 mPa · s heavy oils to assess the effectiveness of W/O droplet flow in alkaline flooding for enhanced heavy oil recovery. The flood tests results demonstrate the considerable potential for improved heavy oil recovery by alkaline flooding, and moreover, the incremental oil recovery has been found to increase as the alkaline concentration increases. The result obtained in three-dimensional physical model study indicates that the sweep area can be greatly improved by the formation of W/O droplet flow in alkaline flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号