共查询到18条相似文献,搜索用时 62 毫秒
1.
K.F.Turkman讨论了一类拟平稳序列最大值的渐近分布。本文利用点过程收全党一理得到水平超出点过程的收敛定理和第r个最大值的渐近分布及前r个最大值的联合渐近分布。 相似文献
2.
3.
一类向量高斯过程之上穿过点过程的渐近分布 总被引:3,自引:0,他引:3
{X(t),t≥}为p维高斯过程,在一定条件下,本文得到了{X(t),0≤t≤T}对水平UT(>0)的ε-上穿过次数所形成的点过程的渐近分布(T→∞)。证明了P个分量点过程的渐近独立性。 相似文献
4.
主要研究一类马尔可夫序列{Xn,n≥0}的最大值的极限分布.导出了这类序列最大值和最小值的分布表达式,利用经典极值理论,建立了规范化最大值max{X0,X1,…,Xn}与i.i.d序列{ξn,n≥1}的规范化最大值max{1ξ,2ξ,…,ξn+1}具有相同极限律的条件. 相似文献
5.
设{X_i}_(i=1)~∞是标准化非平稳高斯序列,N_n为X_1,X_2,…,X_n依次对水平μ_(n1),μ_(n2),…,μ_(nn)的超过数形成的点过程.记Υ_(ij)=X_iX_j,S_n=■X_i.当Υ_(ij)满足一定条件时,证明了N_n依分布收敛到Poisson过程,且N_n与S_n渐近独立. 相似文献
6.
平稳正态序列超过数点过程与部分和的渐近联合分布 总被引:3,自引:0,他引:3
{Xi}为平稳正态序列,具有EX1=0,EX12=1,ρn=EX1Xn 1.对于水平un= ,记在 的条件下,得到了Nn(B)与Sn的渐近联合分布,同时也给出了极值与Sn的渐近联合分布. 相似文献
7.
8.
{X_n,n≥1}为存在样本缺失的标准化平稳正态序列,相关系数r_n=EX_1X_(1+n).(?)_n与(?)_n分别为观测到与未观测到的子样形成的超过数点过程.令N_n=(?)_n+(?)_n.本文研究r_nln→ρ∈[0,∞)时超过数点过程N_n,(?)_n与(?)_n的弱收敛性及顺序统计量的联合渐近分布. 相似文献
9.
10.
本文在「1」的基础上,针对非常值分枝率对应的一类广泛超α-稳定过程占位时过程,证明了在非临界情况下其渐近行为与「1」中相同,但在临界时其渐近性依赖于分枝率在无穷远点的极限行为,从而得到了更为精细的结果。 相似文献
11.
《Stochastic Processes and their Applications》2020,130(9):5802-5837
The seminal papers of Pickands (Pickands, 1967; Pickands, 1969) paved the way for a systematic study of high exceedance probabilities of both stationary and non-stationary Gaussian processes. Yet, in the vector-valued setting, due to the lack of key tools including Slepian’s Lemma, there has not been any methodological development in the literature for the study of extremes of vector-valued Gaussian processes. In this contribution we develop the uniform double-sum method for the vector-valued setting, obtaining the exact asymptotics of the high exceedance probabilities for both stationary and n on-stationary Gaussian processes. We apply our findings to the operator fractional Brownian motion and Ornstein–Uhlenbeck process. 相似文献
12.
Let X, X
1, X
2,... be a sequence of independent and identically distributed random variables with common distribution function F. Denote by F
n
the distribution function of centered and normed sum S
n
. Let F belong to the domain of attraction of the standard normal law , that is, lim F
n
(x)= (x), as n , uniformly in x . We obtain extended asymptotic expansions for the particular case where the distribution function F has the density p(x) = cx
––1 ln(x), x > r, where 2, , c > 0, and r > 1. We write the classical asymptotic expansion (in powers of n
–1/2) and then add new terms of orders n
–/2 ln
n, n
–/2 ln-1
n, etc., where 0. 相似文献
13.
We introduce a general method, which combines the one developed by authors in 1997 and one derived from the work of Malevich,(17) Cuzick(7) and mainly Berman,(3) to provide in an easy way a CLT for level functionals of a Gaussian process, as well as a CLT for the length of a level curve of a Gaussian field. 相似文献
14.
Some asymptotic results are proved for the distribution of the maximum of a centered Gaussian random field with unit variance on a compact subset S of
N
. They are obtained by a Rice method and the evaluation of some moments of the number of local maxima of the Gaussian field above an high level inside S and on the border S. Depending on the geometry of the border we give up to N+1 terms of the expansion sometimes with exponentially small remainder. Application to waves maximum is shown. 相似文献
15.
Zhanying Zhang Wenjun Xiao Guanrong Chen 《Journal of Applied Analysis & Computation》2016,6(4):1105-1113
Many complex networks possess vertex-degree distributions in a power-law form of $ck^{-\gamma}$, where $k$ is the degree variable and $c$ and $\gamma$ are constants. To better understand the mechanism of power-law formation in real-world networks, it is effective to analyze their degree variable sequences. We had shown before that, for a scale-free network of size $N$ ,if its vertex-degree sequence is $k_11$ , then the length $l$ of the vertex-degree sequence is of order $logN$ . In the present paper, we further study complex networks with more general distributions and prove that the same conclusion holds even for non-network type of complex systems. In addition, we support the conclusion by verifying many real-world network and system examples. We finally discuss some potential applications of the new finding in various fields of science, technology and society. 相似文献
16.
研究了一类适应随机变量序列的局部收敛性,推广了文献[1]中的结论.并在假定部分和序列为极限鞅时,得到了极限鞅的强极限定理.最后给出了*-mixing序列的强大数定律. 相似文献
17.
Let X be a non-stationary Gaussian process, asymptotically centered with constant variance. Let u be a positive real. Define Ru(t) as the number of upcrossings of level u by the process X on the interval (0, t]. Under some conditions we prove that the sequence of point processes (Ru)u>0 converges weakly, after normalization, to a standard Poisson process as u tends to infinity. In consequence of this study we obtain the weak convergence of the normalized supremum to a Gumbel distribution.AMS 2000 Subject Classifications Primary—60G70, 60G15 相似文献
18.
林苏榕 《数学物理学报(A辑)》1998,(Z1)
该文研究极限方程在部分边界上为退缩椭圆型(椭圆-抛物)的一类六阶椭圆型方程混合边值问题的奇摄动,在适当的假设下,应用改进了的多重尺度法,求得其解包括边界层和套层在内除了半圆域的两个角点外,在整个半圆域中有任意阶的一致有效的渐近展开式. 相似文献