首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A graphene oxide aerogel synthesized from graphene oxide hydrogel and graphene aerogels have been synthesized using the sol?gel method by reducing a suspension of graphene oxide with various reducing agents: a mixture of hypophosphorous acid and iodine, L-ascorbic acid, sodium metabisulfite, and by hydrothermal treatment. The obtained aerogels have been studied by scanning electron microscopy, IR spectroscopy, Raman spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy. Comparative studies of graphene aerogels have shown that their properties, namely density, specific surface area, reduction degree, surface morphology, defectiveness of graphene sheets, interlayer spacing, average sizes of coherent scattering regions, number of layers, and crystallite size in the basal plane in graphene crystallites depend on the method of synthesis.  相似文献   

2.
High‐quality reduced graphene, termed PG, has been synthesized by a simple, low‐cost, and green plasma approach, and applied as adsorbent to remove 4,4′‐dichloribiphenyl (4,4′‐DCB) from aqueous solutions. As a comparison, the adsorption of 4,4′‐DCB on graphene oxide (GO) and multiwalled carbon nanotubes (MWCNTs) was also studied under the same experimental conditions. PG performs significantly better with regard to 4,4′‐DCB adsorption than GO and MWCNTs, or any reported nanomaterials, with a maximum adsorption capacity (qmax) of 1552 mg g?1 at pH 7.0. The high affinity of 4,4′‐DCB to PG is mainly a result of strong π–π interactions, as also confirmed by DFT calculations. The results reveal that PG sheets hold promise for the removal of persistent organic pollutants. We expect possible applications of this fast and mild plasma technique in the fabrication of nanomaterials and envisage their use in a variety of advanced chemical processes.  相似文献   

3.
Nickel supported on reduced graphene oxide was synthesized by chemical vapor deposition technique. The crystal structure and magnetic properties of the prepared sample were studied by means of Raman spectrometry, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), inductively coupled plasma optical emission spectrometry (ICP-OES), and vibrating sample magnetometry (VSM). The result of Raman spectroscopy revealed the structure of few-layer graphene as the support for Ni nanoparticles. XP spectrum confirmed the presence of metallic Ni on the a few-layer graphene surface. TE micrograph showed that the nickel nanoparticles were sphere shaped and the mean particle size is about 20 nm deposited on the reduced graphene oxide. The magnetic study showed the ferromagnetic behavior of 3.2 wt% nickel over reduced graphene oxide at room temperature.  相似文献   

4.
A single-stage catalyst free synthesis of hydrogenated graphene was studied in the process of methane conversion in a helium plasma jet created by a plasma torch at the power up to 45 kW and the pressure of 710 Torr. The synthesis products were studied by the methods of scanning and transmission electron microscopy, thermal analysis, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis.  相似文献   

5.
Sulfur-decorated nanomesh graphene(S@G) has been synthesized by a 155℃ heat treatment of a mixture of nanomesh graphene and S. The as-obtained S@G materials keep a high specific surface area,and exhibit obviously enhanced conductivity and hydrophilicity as compared to the pristine graphene.X-ray photoelectron spectroscopy and thermogravimetric analysis indicate that most S atoms in the S@G samples are stably combined with nanomesh graphene via covalent bonds rather than exist as free elemental S. As an electrode material for aqueous supercapacitors, the S@G with a S content of 5 wt% delivers a specific capacitance up to 257 F/g at the current density of 0.25 A/g, which is 23.6% higher than that of the undoped graphene. Our results provide a simple approach to scalable synthesis of S-doped porous carbon materials, which have potential applications in the high-performance capacitive energy storage devices.  相似文献   

6.
Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π-π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality.  相似文献   

7.
Nanocomposite materials have been successfully applied to remediation of organic and inorganic contaminants from polluted water. The present study investigates the synthesis, characterizations, and adsorptive performances of graphene oxide/SiO2 nanocomposite-based adsorbent. Graphene oxide/SiO2 was used for the adsorption of methylene blue (MB) and Cr (VI) ion from wastewater. Furthermore, the antibacterial activity performance of synthesized nanocomposite was studied. The adsorption consideration has been performed by various adsorption parameters in our laboratory. X-ray crystallography (XRD), Scanning electron microscope (SEM), Energy Dispersive X-ray Analysis (EDX) and, thermal gravimetric analysis (TGA) methods were applied in the characterization, morphological structure, crystallinity, and thermal stability of graphene oxide/SiO2. Maximum capacities of adsorption of graphene oxide/SiO2-based adsorbent had been evaluated by the Langmuir isotherm model for MB and Cr (VI) ion as 555.50 and 181.81 mg/g, respectively. Generally, adsorption experiments revealed that the performances of graphene oxide/SiO2 nanocomposite for all adsorbents have been found in the order MB > Cr (VI). Furthermore, antibacterial activity study against gram-positive and gram-negative bacteria showed and proved that graphene oxide/SiO2 composite showed a remarkable ability to kill bacteria.  相似文献   

8.
In this study, the graphene oxide/poly(N-isopropylacrylamide) nanocomposite modified with 2-mercaptoethanol (GO/MPNIPAM) was synthesized in three stages. N-Isopropylacrylamide polymerization was firstly performed in the presence of azobisisobutyronitrile as an initiator, which was discovered by Homer, and 2-mercaptoethanol as a modifier. Then, the graphene oxide/modified polymer nanocomposite was synthesized by the covalent interactions between carboxylic acids of the graphene oxide and hydroxyl groups of the modified polymer during the esterification reaction. The GO/MPNIPAM nanocomposite includes some percentage of the polymer that improves solubility and stability of the GO sheets in physiological applications; due to the interaction between the MPNIPAM and the modified GO polymer, a bridge-like connection is formed between the GO sheets and the process that leads to remove a large number of hydrophilic groups on the GO nanocomposite and therefore, the GO/MPNIPAM is well dissolved in organic solvents. This property is beneficial for anti-cancer drug delivery as well as π–π interactions between the nanocomposite and aromatic drugs. The nanocomposite is not a toxic material for human body at all and has high capacity for drug delivery. Structure and morphology of the nanocomposite were studied by FTIR, SEM, XRD, UV, TGA and Raman analysis. The analysis done by X-ray diffraction pattern confirmed the presence of graphene oxide in nanocomposites and improved crystalline polymer in nanocomposites.  相似文献   

9.

Mesoporous magnesium oxide–graphene oxide composite (MGC) has been synthesized using a facile post-immobilization method by mixing pre-synthesized magnesium oxide (MgO) with graphene oxide (GO). MgO used for fabrication of the composite has been synthesized using an environment-friendly method involving gelatin as a template. XRD, Raman and EDX analyses have confirmed the presence of MgO and GO in the composite. FTIR and SEM analyses of synthesized MGC have further elucidated the surface functionalities and morphology, respectively. Using N2 adsorption–desorption isotherm, BET surface area of MGC has been calculated to be 55.9 m2 g?1 and BJH analysis confirmed the mesoporous nature of MGC. The application of synthesized MGC as a selective adsorbent for various toxic anionic dyes has been explored. Batch adsorption studies have been carried out to investigate the influence of different adsorption parameters on the adsorption of two anionic dyes: indigo carmine (IC) and orange G (OG). The maximum adsorption capacities exhibited by MGC for IC and OG are 252.4 and 24.5 mg g?1, respectively. Plausible mechanism of dye adsorption has been explained in detail using FTIR analysis. In a mixture of cationic and anionic dyes, MGC selectively adsorbs anionic dyes with high separation factors, while in binary mixtures of anionic dyes, both dyes are adsorbed efficiently. Thus, MGC has been shown to be a potential adsorbent for the selective removal of anionic dyes from wastewater.

  相似文献   

10.
Plasma Chemistry and Plasma Processing - Wide spectrum of carbon nanostructures was synthesized by means of simple plasma chemistry using DC plasma torch: carbon nanotubes, nanowalls, graphene,...  相似文献   

11.
本文研究氧化石墨烯的合成方法及其在生物传感器中的应用.通过Hummer法氧化天然石墨粉制得氧化石墨,在蒸馏水中利用超声分散将氧化石墨剥片,从而合成了氧化石墨烯(GO).通过透射电镜图表征了氧化石墨烯的形貌并通过红外光谱证实氧化石墨烯的形成.将所合成的氧化石墨烯与三角形貌的金纳米颗粒(prism AuNPs)、辣根过氧化...  相似文献   

12.
In this study, a three-component nanocomposite consisted of graphene, manganese ferrite and phosphotungstic acid (PTA) has been prepared. This composite, which is designated as Graphene/MnFe2O4@PTA, was synthesized through anchoring of PTA–imidazolium ionic liquid on magnetic graphene sheets. The structural and magnetic properties of the fabricated nanocomposite were studied by employing FT-IR, SEM, EDX, TEM, ICP, VSM, P-XRD and BET techniques. The synthesized magnetic nanocomposite was examined as an efficient and recyclable acidic catalyst for Mannich reaction under solvent-free conditions. The products of this reaction, which are an important class of potentially bioactive compounds, were obtained with good to excellent yields, and the catalyst could be readily recycled without any significant loss of its activity.  相似文献   

13.
采用直流电弧等离子体喷射化学气相沉积法把石墨烯生长在钛(Ti)基底上,并采用电化学氧化聚合法在石墨烯表面沉积聚3,4-乙烯二氧噻吩(PEDOT),由此构造PEDOT/石墨烯/Ti电极。形貌及结构表征结果表明,电聚合200圈以上的PEDOT呈线状或泡沫状且均匀分布于石墨烯表面。电化学性能测试结果表明,PEDOT/石墨烯/Ti电极具有高的比电容和库伦效率;其电聚合次数为400圈时,与PEDOT/Ti电极相比,比电容提高42倍,其最大电势窗口可达1.4 V,而在0~1.2 V电势窗口范围内,扫描速度为10 mV·s-1时,比电容可达到269.6 mF·cm-2。  相似文献   

14.
Nanocomposite hydrogels are one of the most important types of biomaterials which can be used in many different applications such as drug delivery and tissue engineering.Incorporation of nanoparticles within a hydrogel matrix can provide unique characteristics like remote stimulate and improved mechanical strength.In this study,the synthesis of graphene oxide and graphene oxide nanocomposite hydrogel has been studied.Nanocomposite hydrogel was synthesized using carboxymethyl cellulose as a natural base,acrylic acid as a comonomer,graphene oxide as a filler,ammonium persulfate as an initiator,and iron nanoparticles as a crosslinking agent.The effect of reaction variables such as the iron nanoparticles,graphene oxide,ammonium persulfate,and acrylic acid were examined to achieve a hydrogel with maximum absorbency.Doxorubicin,an anti-cancer chemotherapy drug,was loaded into this hydrogel and its release behaviors were examined in the phosphate buffer solutions with different pH values.The structure of the graphene oxide and the optimized hydrogel were confirmed by Fourier-transform infrared spectroscopy,Raman spectroscopy,X-ray diffraction,scanning electron microscopy,and atomic force microscopy.  相似文献   

15.
The electrocatalytic oxidation of ethanol is studied on the non-noble catalysts Ni-Co/graphene and Ni/graphene supported on glass carbon electrode (GCE) in alkaline medium. The synthesized materials are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning transmission electron microscopy. The elements of Ni-Co/graphene and Ni/graphene catalysts are characterized using energy-dispersive X-ray spectroscopy. The electrocatalytic properties of Ni-Co/graphene and Ni/graphene for ethanol oxidation are investigated by cyclic voltammetry, chronoamperometry, and Tafel plot. Compared with Ni/graphene catalyst, Ni-Co/graphene has the higher electroactivity and better stability for ethanol oxidation. The rate constant (k s) and charge-transfer coefficient (α) are calculated for the electron exchange reaction of the modified GCE. The results indicate that Co addition could promote the oxidation reaction at the Ni/graphene catalyst. Our study demonstrates that the low-cost electrocatalyst Ni-Co/graphene has a great potential for real direct ethanol fuel cells’ application.  相似文献   

16.
Controlled growth of single-crystal high-quality ‘track-and-field ground’ shaped graphene domains and the morphological evolution from hexagonal to hexagram graphene domain even square and circular graphene domain has been achieved by low-pressure CVD on solid copper substrate, thereby demonstrating that the shape of the graphene grains can potentially be precisely tuned by optimizing growth parameters. The etching reaction of graphene has also been studied, and results show that a low flow rate of hydrogen (99.999%) is favorable to form hexagonal structure for the etching reaction of graphene due to the exist of oxygen or oxidizing impurities in hydrogen gas commonly used. Controlled growth and etching reaction of graphene determine the final shape of graphene domains and all these efforts contribute to the study of size and morphology and the growth mechanism of graphene domains.  相似文献   

17.
Catalyst-free graphene nanosheets without substrates were synthesized using pure solid carbon sources of multiwalled carbon nanotubes (MWCNTs) and a spark plasma sintering (SPS) process. Single and few-hundred-nanometer graphene nanosheets were formed from gas-phase carbon atoms which were directly evaporated from MWCNTs at a local high temperature.  相似文献   

18.
Ferrocene tethered N‐heterocyclic carbene‐copper complex anchored on graphene ([GrFemImi]NHC@Cu complex) has been synthesized by covalent grafting of ferrocenyl ionic liquid in the matrix of graphene followed by metallation with copper (I) iodide. The [GrFemImi]NHC@Cu complex has been characterized by fourier transform infrared (FT‐IR), fourier transform Raman (FT‐Raman), CP‐MAS 13C NMR spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), energy dispersive X‐ray (EDX) analysis, X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis and X‐ray diffractometer (XRD) analysis. This novel complex served as a robust heterogeneous catalyst for the synthesis of bioactive N‐aryl sulfonamides from variety of aryl boronic acids and sulfonyl azides in ethanol by Chan‐Lam coupling. Recyclability experiments were executed successfully for six consecutive runs.  相似文献   

19.
Carbonaceous nanomaterials and their derivatives have been inspired tremendous enthusiasm in the scientific community. They have been excogitated as the encouraging attributes and the qualified dispersed phase to develop multi-functional composites. Particularly, graphene and carbon nanotube (anisotropic fillers) have gained substantial research interest owing to their promising characteristics. This highlights an innovative technique to synthesize hybridized nanotube and nanosheet. Initially, parent materials have been synthesized: The pristine CNT has been modified by acid mixture solution, and reduced graphene oxide has been prepared by chemical reduction method. Henceforth, the self-assembly in situ sol–gel technique has been endorsed here. The synthesized nanohybrids have been characterized by different spectroscopic techniques: FTIR, Raman, UV, and XPS to confirm the attachment of multifunctionalities; meanwhile, the composition and stability have been investigated from XRD and TGA plots. The magnitude of surface charge and particle size distribution have been evaluated for the parent and hybridized products; further, morphology of all the samples has been authenticated from FESEM and TEM.  相似文献   

20.
Poly(diallyldimethylammonium chloride) (PDDA) has been employed as a modifying material for the development of new functional materials; then, the functionalized graphene was employed as a support for Pd nanoparticles through a facile method. The structures and morphologies of the as‐synthesized Pd/PDDA–graphene composites were extensively characterized by Raman spectroscopy, XRD, XPS, and TEM. Morphological observation showed that Pd NPs with average diameters of 4.4 nm were evenly deposited over the functionalized graphene sheets. Moreover, the electrochemical experiments indicated that the Pd/PDDA–graphene catalyst showed improved electrocatalytic activity toward alcohol‐oxidation reactions compared to the Pd/graphene and commercial Pd/C systems, as well as previously reported Pd‐based catalysts. This study demonstrates the great potential of PDDA‐functionalized graphene as a support for the development of metal–graphene nanocomposites for important applications in fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号