首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rigid linear compounds G1 and G2 , which contained two 4‐phenylpyridinium (PhPy+) units, have been prepared to investigate their binding with cucurbit[8]uril (CB[8]). X‐ray crystallographic structures revealed that in the solid state both compounds were included by CB[8], through antiparallel stacking, to form 2:2 quaternary complexes ( G1 )2@(CB[8])2 and ( G2 )2@(CB[8])2. For the former complex, CB[8] entrapped G1 by holding two heterodimers of its Py+ and benzyl units, which were at opposite ends of the backbone. In contrast, for the first time, the second complex disclosed parallel stacking of two cationic Py+ units of G2 in the cavity of CB[8] in the solid state, despite the generation of important electrostatic repulsion. Isothermal titrations in water afforded high apparent association constants of 4.36×106 and 6.43×106 m ?1 for 1:1 complexes G1 @CB[8] and G2 @CB[8], respectively, and 1H NMR spectroscopy experiments in D2O confirmed a similar stacking pattern to that observed in the solid state. A previous study and crystal structures of the 2:1 complexes formed between three new controls, G3–5 , and CB[8] did not display such unusual stacking of the cationic Py+ unit; this may be attributed to the multivalency of the two CB[8] encapsulation interactions.  相似文献   

2.
Results of DFT calculations of the structure and thermodynamics of formation of aqua and tetraammine Cu(II) complexes inside CB[n] (n = 6,8) are presented in this study. Formation thermodynamics of the complexes in the cavitands was evaluated by taking into account the most probable number of water molecules inside CB[n]. In this methodology, the complexation was first considered as a substitution reaction in which the guest complex displaces partially or completely the water molecules that are located inside the cavity. The water molecules present in the cavitand were shown to play an important role in the fixation of the guest complex inside the cavity due to the hydrogen bonds with the oxygen portals. The hydration of Cu(II) ion inside CB[6] leads to the formation of an inclusion compound with the formula {[Cu(H2O)4]2+·2H2O}@CB[6] while in CB[8] {[Cu(H2O)6]2+·4H2O}@CB[8] is formed. For the binding of tetraammine Cu(II) complex, CB[8] was determined to be a significantly more suitable “container” than CB[6]. Both a direct embedding of this complex into the CB[8] and another mechanism in which ammonia molecules replace the water molecules in the Cu(II) aqua complex, preexisting in CB[8] were determined to be thermodynamically possible. Both these lead to the formation of the resultant inclusion compound described by the formula {[Cu(NH3)4(H2O)2]2+·4H2O}@CB[8].  相似文献   

3.
New inclusion compounds containing iron(II), cobalt(III), and nickel(II) complexes with the cyclic polyamine ligands cyclam and cyclen in the macrocyclic cavitand cucurbit[8]uril (CB[8]) were obtained: {trans-[Fe(Cyclam)(CO)(OCHO)]@CB[8]}Cl · 15H2O, {cis-[Co(Cyclen)(H2O)Cl]@CB[8]}Cl2 · 20H2O, and {cis-[Ni(Cyclen)(H2O)Cl]@CB[8]}Cl · 12H2O. According to X-ray diffraction data, the complexes are in the cavity of each CB[8] molecule. The complexes of the above molecular formulas were isolated in the solid state as supramolecular compounds with CB[8] and structurally characterized for the first time.  相似文献   

4.
Thiacarbo- and thiadicarbocyanine indolenine and thiazoline polymethine dyes form host?guest complexes with cucurbit[7,8]urils in water. Cucurbit[7]uril forms preferentially 1: 1 and 1: 2 monomeric complexes and cucurbit[8]uril forms 2: 1 and 2: 2 dimeric complexes. On the basis of quantum-chemical calculations, the structure of monomeric and dimeric complexes has been suggested. The complexation manifested itself in absorption, prompt and thermally activated delayed fluorescence spectra, as well as in the triplet?triplet absorption spectra. Dimeric complexes in the triplet state are involved in one-electron oxidation and participate in triplet?triplet energy transfer.  相似文献   

5.
Photolysis of aqueous solutions of styryl dye 1 in the presence of cucurbit[8]uril (CB[8]) has been studied by optical spectroscopic methods for the molar ratios n = c CB[8]/c 1 in the range of 0 ≤ n ≤ 6. It has been found that the inclusion complexes (1)2@CB[8] dominate in the solution at n ≤ 0.5, whereas the complexes 1@CB[8] dominate at n ≥ 1. The stability constants have been determined for the 1: 1 (log K 1 = 6.2 (L mol?1)) and 2: 1 (log β = 11.9 (L2 mol?2)) complexes. The fluorescence decay kinetics of dye 1 in the presence of CB[8] is two-exponential, with the average lifetime increasing substantially at n ≥ 1. It has been shown that the system can operate in the cyclic mode as an assembler (or supramolecular catalyst) in the photodimerization reaction of dye 1 to form cyclobutane derivative 2. The stability constant of the complex 2@CB[8] (log K 3 = 5.9 (L mol?1)) and the quantum yield of cycloaddition (? ≈ 0.07 at n ≈ 0.5) have been determined.  相似文献   

6.
In this work we report findings of the quantum-chemical examination of water structuring in the cavities of cucurbit[n]urils (CB[n]), n?=?5–8 obtained within the density functional theory. The thermodynamically most stable structures of inclusion compounds (H2O)m@CB[n] were determined for different numbers m of H2O molecules inside the cavities. From the viewpoint of thermodynamics, the most probable numbers m of water molecules in the CB[n] homologues are the following: m?=?2 for CB[5], m?=?4 for CB[6], m?=?8 for CB[7] and m?=?10 for CB[8]. For the case of CB[6] synthesized in aqueous solution, we compared its experimental IR spectrum with that calculated quantum-chemically for the model inclusion systems (H2O)m@CB[6] where m ranges from 1 to 6. The best agreement between the experimental and theoretical spectra was observed for (H2O)4@CB[6], in complete agreement with the conclusion made based on the thermodynamic estimations. Our results are also in good agreement with other available estimates of the most probable number of water molecules in CB[n].  相似文献   

7.
Inclusion compounds of the macrocyclic cavitand cucurbit[8]uril (CB[8]) with the nickel(II) complex, {trans-[Ni(en)2(H2O)2]@CB[8]}Cl2 · 23.5H2O, the copper(II) complex, {2[Cu(dien)(bipy)(H2O)]@CB[8]}(ClO4)4 · 11H2O, and the organic molecules, 2(pyCN)@CB[8]} · 16H2O and {2(bpe)@CB[8]} · 17H2O, where bipy is 4,4′-bipyridyl, pyCN is 4-cyanopyridine, and bpe is trans-1,2-bis(4-pyridyl)ethylene, were synthesized. The inclusion compounds with organic molecules were synthesized starting from inclusion compounds of cucurbit[8]uril with cyclam and ethylenediamine complexes of copper(II) and nickel(II) by the guest exchange method, which is based on the replacement of one guest with another in the cavity of the cavitand The resulting compounds were characterized by X-ray diffraction, ESR, 1H NMR, IR, and electronic absorption spectroscopy, and electrospray mass spectrometry. Photochemically induced [2+2]-cycloaddition of two 1,2-bis(4-pyridyl)ethylene molecules included in cucurbit[8]uril was studied. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 25–34, January, 2006.  相似文献   

8.
Triplet-triplet energy transfer has been studied between benzophenone and an oxazine dye (2,7-bis(diethyl-amino)-phenazoxonium chloride) co-adsorbed on the surface of microcrystalline cellulose. Ground state absorption and fluorescence measurements provide evidence for dimer formation of the oxazine dye when adsorbed on cellulose in contrast to the behaviour in ethanol solution where no dimerization is observed. The equilibrium constant for dimerization, which is found to be (1.0 × 0.1) × 106 mol?1 g (2560 × 250 dm3 mol?1) for oxazine alone on cellulose decreases in the presence of co-adsorbed benzophenone. Fluorescence is detected from excited monomeric but not from excited dimeric oxazine. The absorption spectrum of the triplet state of oxazine adsorbed on cellulose was obtained and its extinction coefficient evaluated relative to that of triplet benzophenone which was used as a sensitizer. The lifetime of adsorbed triplet oxazine is 4.3 ms which is 300 times longer than that in acetonitrile solution. The efficiency of energy transfer from triplet benzophenone to oxazine on cellulose was studied using both time resolved sensitized absorption and phosphorescence intensity measurements as a function of oxazine concentration. Lifetime measurements show that the energy transfer process involves static quenching since the benzophenone lifetime is independent of oxazine loading at the surface. A mechanism is proposed to explain the results in which one oxazine molecule is suggested as being able to quench phosphorescence from a “pool” consisting of 2 to 3 benzophenone molecules.  相似文献   

9.
Tricyclic basic dyes (proflavine, acridine orange, pyronine, pyronine Y, oxonine, thionine and methylene blue) often form one‐to‐one or two‐to‐one complexes with CB[7] and CB[8], respectively. In the case of pyronine Y, the complexes with CB[7] and CB[8] have a one‐to‐one and three‐to‐one stoichiometry, respectively. The binding constants for CB[7] complexes range from 3.07×106 to 1.70×107 m ?1. In the case of CB[8], the association constant varies between 3.24×1013 and 2.50×1016 m ?2. Overall, these binding constants are four orders of magnitude higher than those reported for the same dyes in β and γ‐cyclodextrins. Formation of the host–guest complexes leads to an increase in the fluorescence quantum yields in the case of CB[7], while the dimeric or trimeric dye encapsulated in CB[8] are remarkably less fluorescent than the same dye in diluted solutions.  相似文献   

10.
Photoinduced processes in bis(diethylaminobenzylidene)cyclohexanone (CH1) and its bis(aza-18-crown-6) derivative (CH2) in acetonitrile at ambient temperature and 77 K have been studied. The absorption, fluorescence, and phosphorescence spectra of CH1 and CH2 are similar. The probability of the formation of the triplet state is higher for CH2 molecules (λT-Tmax = 660 nm, lifetime τT ~ 20 μs). The lifetime of the CH1 molecule in the triplet state is estimated at τT ~ 2–3 μs. Photoisomers of CH1 and CH2 are formed along with the triplet state. According to DFT calculation results, the formation of trans–cis photoisomers of CH1 and CH2 is the most energetically favorable.  相似文献   

11.
Cationic dye 3,3-diethylthiacarbocyanine (TCC) in a phosphate buffer solution (pH 6.86) in the presence of cucurbit[7]uril (CB7) occurs in the form of monomeric TCC@CB7 and dimeric (TCC@CB7)2 complexes. The TCC@CB7 and (TCC@CB7)2 complexes display fast (conventional) and delayed (thermally activated, of type E) fluorescence, as well as free TCC. The relative yield of fast fluorescence of TCC@CB7 is six times that of free TCC. The delayed fluorescence lifetimes τdfl of TCC@CB7 and (TCC@CB7)2 are 0.5 and 1.6 ms, respectively. In the presence of p-nitroacetophenone (electron acceptor), the delayed fluorescence of (TCC@CB7)2 is quenched dynamically with the rate constant of 7 × 108 L mol—1s—1.  相似文献   

12.
The absorption spectra, luminescence spectra, and luminescence lifetimes of the isomeric [M(bph)(bpy)] and [M(phpy)2] complexes M = Pt(II) or Pd(II), bph2? = 1,1′-biphenyl-2,2′-diyl dianion, phpy? = 2-phenylpyridine-2′-yl anion, and bpy = 2,2′-bipyridine have been investigated and compared with those of [M(bpy)2]2+ complexes and of the free protonated ligands H2bph, Hbpy+, and Hphpy. In the absorption spectra, the region below 320 mm is dominated by ligand-centered (LC) transitions, whereas metal-to-ligand charge transfer (MLCT) transitions are responsible for the bands present in the near UV/VIS region. The MLCT bands move to higher energies on replacing Pt with Pd and in going from [M(bph)(bpy)] to the [M(phpy)2] isomer. For the mixed-ligand complexes, evidence for both M → bph2? (at higher energies) and M → bpy bands is found. The structured luminescence observed at 77 K shows lifetimes of 4.0 and 1.1 μs for [Pt(phpy)2] and [Pt(bph)(bpy)], respectively, and 480 and 250 μs for the analogous Pd complexes. On the basis of the energy and lifetime data, the luminescence of the Pt(II) complexes is assigned to the lowest triplet MLCT excited state, whereas for the Pd complexes the luminescent state is thought to result from a mixture of MLCT and LC triplet levels.  相似文献   

13.
Time-resolved fluorescence and phosphorescence study of hypericin (Hyp) in complex with low-density lipoproteins (LDL) as well as the evolution of singlet oxygen formation and annihilation after illumination of Hyp/LDL complexes at room temperature are presented in this work. The observed shortening of the fluorescence lifetime of Hyp at high Hyp/LDL molar ratios (>25:1) proves the self-quenching of the excited singlet state of monomeric Hyp at these concentration ratios. The very short lifetime (∼0.5 ns) of Hyp fluorescence at very high Hyp/LDL ratios (>150:1) suggests that at high local Hyp concentration inside LDL molecules fast and ultrafast nonradiative decay processes from excited singlet state of Hyp become more important. Contrary to the lifetime of the singlet excited state, the lifetime (its shorter component) of Hyp phosphorescence is not dependent on Hyp/LDL ratio in the studied concentration range. The amount of singlet oxygen produced as well as the integral intensity of Hyp phosphorescence after illumination of Hyp/LDL complexes resemble the dependence of the concentration of molecules of Hyp in monomeric state on Hyp/LDL until a concentration ratio of 60:1. This fact confirms that only monomeric Hyp is able to produce the excited triplet state of Hyp, which in aerobic conditions leads to singlet oxygen production. The value of singlet oxygen lifetime (∼8 μs) after its formation from the excited triplet state of Hyp in LDL proves that molecules of singlet oxygen remain for a certain period of time inside LDL particles and are not immediately released to the aqueous surrounding. That Hyp exists in the complex with LDL in the monodeprotonated state is also demonstrated.  相似文献   

14.
p-Phenylenedimethylene-1,1′-bis(tetrahydrothiophen-1-ium) dibromide (PBTHBr2), one of the possible monomers of poly(p-phenylenevinylene) (PPV), forms a very stable complex with cucurbiturils (CBs) of the appropriate internal diameter as assessed by 1H NMR. Using PBTH2+@CB[7] as starting material, the corresponding PPV@CB[7], a pseudopolyrotaxane in which phenylenevinylene units are inserted in CB[7]s, was obtained by condensation with NaOH and thermal treatment at 200 °C. Considering that many applications of PPV derive from luminescence, observation of a strong emission for PPV@CB[7] with a lifetime somewhat shorter than the pure polymer makes also this material useful for applications in nanotechnology.  相似文献   

15.
Employing bis(p‐sulfonatocalix[4]arenes) (bisSC4A) and N′,N′′hexamethylenebis(1‐methyl‐4,4′‐bipyridinium) (HBV4+) as monomer building blocks, the assembly morphologies can be modulated by cucurbit[n]uril (CB[n]) (n=7, 8), achieving the interesting topological conversion from cyclic oligomers to linear polymers. The binary supramolecular assembly fabricated by HBV4+ and bisSC4A units, forms an oligomeric structure, which was characterized by NMR spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and gel permeation chromatography (GPC) experiments. The ternary supramolecular polymer participated by CB[8] is constructed on the basis of host–guest interactions by bisSC4A and the [2]pseudorotaxane HBV4+@CB[8], which is characterized by means of AFM, DLS, NMR spectroscopy, thermogravimetric analysis (TGA), UV/Vis spectroscopy, and elemental analysis. CB[n] plays vital roles in rigidifying the conformation of HBV4+, and reinforcing the host–guest inclusion of bisSC4A with HBV4+, which prompts the formation of a linear polymer. Moreover, the CB[8]‐participated ternary assembly could disassemble into the molecular loop HBV2+@CB[8] and free bisSC4A after reduction of HBV4+ to HBV2+, whereas the CB[7]‐based assembly remained unchanged after the reduction. CB[8] not only controlled the topological conversion of the supramolecular assemblies, but also improved the redox‐responsive assembly/disassembly property practically.  相似文献   

16.
Inclusion compounds of the macrocyclic cavitand cucurbit[8]uril (CB[8]) with the ruthenium(iii) bis(ethylenediamine) complex {trans-[Ru(en)2Cl2]@CB[8]}Cl·27.5H2O (1), the gold(iii) diethylenetriamine complex {[Au(dien)Cl]@CB[8]}Cl2·11H2O (2), and the gold(iii) and platinum(ii) cyclam complexes (H3O)5{[Au(cyclam)]@CB[8]}Cl8·18H2O (3) and {[Pt(cyclam)]0.11(H2cyclam)0.89@CB[8]}Cl2·16H2O (4), respectively, where cyclam is the tetraazamacrocyclic ligand, were synthesized. The inclusion compounds were synthesized both directly starting from CB[8] and the metal complexes with polyamines (en or dien) and by the two-step method with the use of the cyclic polyamine ligand (cyclam) pre-included into the cavity of the macrocycle. The inclusion compounds were characterized by X-ray diffraction (1, 2, and 4), IR spectroscopy, electrospray ionization mass spectrometry, UV-Vis spectroscopy, and thermogravimetric analysis.  相似文献   

17.
Complexation of yellow diaminoazobenzenes 1 and 3 inside cucurbit[7]uril (CB[7]) results in the formation of purple‐colored CB[7] ? cis‐ 1? 2 H+ and CB[7] ? cis‐ 3? 2 H+ complexes, respectively. The high binding affinity and selectivity displayed by CB[7] toward 1 and 3 pays the >10 kcal mol?1 thermodynamic cost for this isomerization. We investigated the behavior of these complexes as a function of pH and observed large pKa shifts and high pH responsiveness, which are characteristic of cucurbit[n]uril molecular containers. The remarkable yellow to purple color change was utilized in the construction of an indicator displacement assay for biologically active amines 4 – 10 . This indicator displacement assay is capable of quantifying the pseudoephedrine ( 5 ) content in Sudafed tablets over the 5–350 μM range.  相似文献   

18.
The high element abundance and d10 electron configuration make ZnII-based compounds attractive candidates for the development of novel photoactive molecules. Although a large library of purely fluorescent compounds exists, emission involving triplet excited states is a rare phenomenon for zinc complexes. We have investigated the photophysical and -chemical properties of a series of dimeric and monomeric ZnII halide complexes bearing a cyclic (alkyl)(amino)carbene (cAAC) as chromophore unit. Specifically, [(cAAC)XZn(μ-X)2ZnX(cAAC)] (X=Cl ( 1 ), Br ( 2 ), I ( 3 )) and [ZnX2(cAAC)(NCMe)] (X=Br ( 4 ), I ( 5 )) were isolated and fully characterized, showing intense visible light photoluminescence under UV irradiation at 297 K and fast photo-induced transformation. At 77 K, the compounds exhibit improved stability allowing to record ultra-long lifetimes in the millisecond regime. DFT/MRCI calculations confirm that the emission stems from 3XCT/LEcAAC states and indicate the phototransformation to be related to asymmetric distortion of the complexes by cAAC ligand rotation. This study enhances our understanding of the excited state properties for future development and application of new classes of ZnII phosphorescent complexes.  相似文献   

19.
We designed and synthesized the three molecular tweezers 1 a – c 4+ containing an electron acceptor 4,4‐bipyridinium (BPY2+) unit in each of the two arms and an (R)‐2,2‐dioxy‐1,1‐binaphthyl (BIN) unit that plays the role of chiral centre and the hinge of the structure. Each BPY2+ unit is connected to the BIN hinge by an alkyl chain formed by two‐ ( 1 a 4+), four‐ ( 1 b 4+), or six‐CH2 ( 1 c 4+) groups. The behavior of 1 a – c 4+ upon chemical or photochemical reduction in the absence and in the presence of cucurbit[8]uril (CB[8]) or cucurbit[7]uril (CB[7]) as macrocyclic hosts for the bipyridinium units has been studied in aqueous solution. A detailed analysis of the UV/Vis absorption and circular dichroism (CD) spectra shows that the helicity of the BIN unit can be reversibly modulated by reduction of the BPY2+ units, or by association with cucurbiturils. Upon reduction of 1 a – c 4+ compounds, the formed BPY+ . units undergo intramolecular dimerization with a concomitant change in the BIN dihedral angle, which depends on the length of the alkyl spacers. The alkyl linkers also play an important role in association to cucurbiturils. Compound 1 a 4+, because of its short carbon chain, associates to the bulky CB[8] in a 1:1 ratio, whereas in the case of the smaller host compound CB[7] a 1:2 complex is obtained. Compounds 1 b 4+ and 1 c 4+, which have longer linkers, associate to two cucurbiturils regardless of their sizes. In all cases, association with CB[8] causes an increase of the BIN dihedral angle, whereas the formation of CB[7] complexes causes an angle decrease. Reduction of the CB[8] complexes results in an enhancement of the BPY+ . dimerization with respect to free 1 a – c 4+ and causes a noticeable decrease of the BIN dihedral angle, because the BPY+ . units of the two arms have to enter into the same macrocycle. The dimer formation in the CB[8] complexes characterized by a 1:2 ratio implies the release of one macrocycle showing that the binding stoichiometry of these host–guest complexes can be switched from 1:2 to 1:1 by changing the redox state of the guest. When the reduction is performed on the CB[7] complexes, dimer formation is totally inhibited, as expected because the CB[7] cavity cannot host two BPY+ . units.  相似文献   

20.
The formation of highly stable inclusion complexes in aqueous solution between the organometallic cobaltocenium cation (Cob(+)) and the hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) was used to develop a simple method, based on UV-vis titrations, to assay the purity of samples of these two hosts. The equilibrium association constant (K) of the Cob(+)@CB7 complex had been previously reported by our group as 5.7 × 10(9) M(-1) at 25 °C in 50 mM sodium acetate medium. In this work, we determine a K value of 1.9 × 10(8) M(-1) at 25 °C in the same medium for the Cob(+)@CB8 complex. The high stability of these complexes and their decreased molar absorptivity coefficients (at 261 nm), compared to that for free Cob(+), lead to straightforward titration plots when graphing absorbance versus concentration of added CB7 (or CB8) host, at constant Cob(+) concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号