首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The equilibrium structures and relative stabilities of BN-doped fullerenes C70−2x(BN)x (x=1–3) have been studied at the AM1 and MNDO level. The most stable isomers of C70−2x(BN)x have been found out and their electronic properties have been predicted. The calculation results show that the BN substituted fullerenes C70−2x(BN)x have considerable stabilities, though they are less stable than their all carbon analog. For C68BN, the isomers whose BN is located in the most chemically active bonds of C70 (namely B and A) are among the most stable species, of which B is predicted to be the ground state. The stabilities of C68BN decrease and the dipole moments increase with increasing the distance between the heteroatoms. For C66(BN)2, the lowest energy species is the isomer in which the B–N–B–N bond is formed; For C64(BN)3, the most stable species should have three BN units located in the same hexagon to form B–N–B–N–B–N ring. The ionization potentials and the affinity energies of the most stable species of BN-doped C70 are almost the same as those of C70 because of the isoelectronic relationship. The ionization potentials and affinity energies depend on the relative position of the heteroatoms in C68BN, the chemical reactivities of the isomers whose heteroatoms are well separated should differ significantly from their all carbon analog.  相似文献   

2.
For the molecule fullerene-C70 (one of the higher fullerenes) the stabilization energy (SE)/resonance energy (RE) has been determined in a generalized valence bond (GVB) set-up from the minimization (stabilization) energy associated with Pauli's orbital interactions (POIs) involving all its 70 2pz GVB carbon orbitals. For this purpose, fullerene-C70 has been considered to contain, at any one time, a unit of four independent carbon skeletons of phenanthrene/anthracene on its spheroidal surface, which have been selected from 25 hexagonal carbon rings present within it in 14 different ways. POIs have been considered in all the phenanthrene/anthracene skeletons and the SE/RE for the molecule has been calculated on the basis of the average contribution of each hexagonal carbon ring in the overall POI process.  相似文献   

3.
The general expression for the common one-electron density matrix (DM) of saturated organic molecules obtained previously in the framework of the Hückel type model (V. Gineityte, J. Mol. Struct. (Theochem) 343 (1995) 183) has been applied to reveal the additive components of the heteroatom influence in substituted alkanes. To this end, the occupation number of a basis orbital has been expressed as a sum of three terms describing the polarization and depolarization of bonds and the intramolecular charge transfer. These terms, in turn, have been related to certain types of direct (through-space) and indirect (through-bond) interactions of bond orbitals (BOs). In particular, changes in the secondary polarization of C-C and C-H bonds under the influence of a heteroatom giving rise to their induced dipole moments has been related to differences in the indirect interaction between the two BOs of the given bond before and after substitution. Additive quantum-chemical analogues of the classical inductive and electron-donating effects have been established. The above-mentioned expressions for the occupation numbers have been also applied to substantiate the implicit postulates of the classical chemistry about additivity of the heteroatom influence in substituted alkanes.  相似文献   

4.
Previous work in our group on the cation binding of substituted cyclopentadienyl anions (Cp) showed the curious result that Cp traceless electric quadrupole moments (Θ(zz)) are almost all positive. Probing this issue further here we show that substituted Cp Θ(zz) values are always significantly more positive than the analogous substituted benzenes. Given the nature of aromatic Θ(zz) values, this is the opposite of what would be predicted. Furthermore, we show that the quadrupole moments of Cp anions do not behave as one would expect based on Cp substitutions. Unlike the quadrupole moments of substituted benzenes, which generally become more negative with the addition of electron-donating groups and more positive with the addition of electron-withdrawing groups, Cp quadrupole moments become more positive when any substituent is added, regardless of the electron-donating/withdrawing nature of the substituent. To explain these results we propose a model where the anionic Cp π-electron density repels the substituent electron density toward the molecular periphery and AIM calculations support this view.  相似文献   

5.
A scheme that explicitly contains electrostatic, polarization, and dispersion interactions to rapidly simulate anion-π interactions is proposed and assessed by structural and energetic comparison with those produced via the complete basis set limit of the coupled-cluster singles and doubles plus perturbative triples [CCSD (T)/CBS] method for a set of X-…C6H6-nRn complexes where X-=F-, Cl-, Br- and R=CN, F. We use the chemical bonds C≡N, C―F, and C―H of the substituted benzenes as bond dipoles. The electrostatic interactions are estimated by calculating the interactions between the charge of the anion and the bond dipole moments of the substituted benzene. The polarization interactions are described according to the variation of the magnitudes of the bond dipole moments with the local environment. The parameters needed are produced by fitting the high-quality CCSD (T)/CBS potential energy curves. Calculation results show that our scheme produces equilibrium intermolecular distances with a root-mean-square deviation of 0.004 nm and interaction energies with a root-mean-square deviation of 2.81 kJ·mol-1 compared with the CCSD (T)/CBS results. The calculation results also show that our scheme reproduces the CCSD (T)/CBS potential energy curves well. These comparisons indicate the scheme proposed here is accurate and efficient, suggesting it may be a helpful tool to design and simulate relevant molecular materials.  相似文献   

6.
Principal component analysis (PCA) is applied to 32 disubstituted unsaturated compounds (Y–CH2–X): cyanides, oximes and propenes; bearing 12 -substituents: F, Cl, Br, I, OMe, OEt, SMe, SEt, NMe2, NEt2, Me, and Et. The experimental 13C chemical shifts for the -carbon and functional carbon atoms are correlated with theoretically derived molecular properties, i.e. partial charges, electronegativity, hardness, dipole moments and the nuclear repulsion energies. In the first PCA, the clustering of these three classes of organic compounds occurred mostly because of the chemical shifts and partial charges, and also of the dipole moments, hardness and electronegativity parameters as confirmed by loading graph. A strong grouping is observed in the second PCA, showing the chemical shift dependence on the type of heteroatom substituents. Therefore, sulfur, nitrogen, oxygen and neutral groups exhibit four types of C-13 SCS influences, indicating that the heteroatom (Y) properties play a significant role on the effects on chemical shifts. The -halogenated compounds represent a very heterogeneous group due to possible orbital interactions between the functional group and the substituent. The third PCA shows the grouping of F, Cl, Br and I derivatives, confirming the second PCA results that same halogen presents the same or very similar effects on the chemical shifts.  相似文献   

7.
V. Baliah  K. Aparajithan 《Tetrahedron》1963,19(12):2177-2183
The electric dipole moments of a number of substituted acetophenones, with at least one substituent (methyl, halo, nitro or amino) in the ortho position, have been measured in benzene solution and compared with the values calculated for free rotation as well as for s-trans and s-cis orientations of the acetyl group. 2-Methylacetophenones have a greater proportion of the s-cis isomer while 2-haloacetophenones have a greater proportion of the s-trans isomer. With increase in temperature there is an increase in the proportion of the less stable isomer. The observed dipole moment of o-aminoacetophenone indicates that the molecule exists predominantly in the s-cis configuration stabilized by intramolecular hydrogen bonding.  相似文献   

8.
It is demonstrated from the results of a quantum-chemical calculation by the CNDO/2 (complete neglect of differential overlap/2) method and the experimental dipole moments for a number of 4-substituted tetrabromopyridines that the character of the intramolecular interactions in the investigated compounds differs little from that observed for 4-substituted nonhalogenated pyridines. A linear relationship between the charge on the heteroatom and the p constants for the substituents in the 4 position was observed. A similar relationship was obtained for the experimental dipole moments and the substituent constants.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 927–931, July, 1981.  相似文献   

9.
10.
Methyl(oxo)bis(η2-peroxo)rhenium(VII)1, the active species of the system CH3ReO3/H2O2 in the catalytic oxidation of different organic and organometallic compounds, is stabilized by a water molecule attached to the rhenium center. This water molecule can be removed and substituted by hexamethylphosphoramide (HMPA) to yield (hexamethylphosphoramide)methyl(oxo)bis(η2-peroxo rhenium(VII) (3). The synthesis, crystal structure (X-ray difraction study), and catalytic properties of which compound are reported. Crystal data are as follows: monoclinic, space group P21/n, A = 900.76(7) pm, B = 1229.80(11) pm, C = 1318.57(11) pm, β = 90.251(7)°, Rw = 0.034 for 1878 reflections. The catalytic properties of compound 3 in the oxidation of olefins with H2O2 are similar to those of 1.  相似文献   

11.
A density functional theory investigation on a series of sandwich-type transition metal complexes [(CBO)n]2M (n=4–6; M=transition metals) with carbon boronyls (CBO)n as effective aromatic ligands has been presented in this work at B3LYP level. The ground-states of these complexes possess staggered Dnd symmetries, while the corresponding eclipsed Dnh structures exist as transition states with slightly higher energies (within 5.8 kJ/mol). Carbon boronyl complexes [(CBO)n]2M are confirmed to be much more stable than their boron carbonyl isomers [(BCO)n]2M, which, on the other hand, take eclipsed ground-states with Dnh symmetries. The carbon boronyl complexes [(BCO)n]2M proposed in this work parallelize the well-known sandwich-type hydrocarbon complexes [CnHn]2M in coordination chemistry with boronyl groups –BO isolobal to –H atoms in corresponding ligands.  相似文献   

12.
Two polymeric complexes, [Cu2(btec)(phen)2]n·(H2O)n (1) and [Cd4(btec)2(phen)4(H2O)4]n (2) (H4btec=1,2,4,5-benzenetetracarboxylic acid; PHEN=1,10-phenanthroline), were synthesized by solvothermal reactions at 140 °C. Both complex 1 and 2 possess infinite double-chain structures, in which each Cu(II) center has a tetrahedral configuration and the Cd(II) centers adopt triangular prismatic and square-based pyramidal configurations simultaneously. The inter-chain face to face π–π interactions among the aromatic rings of phen and the hydrogen bond interactions between aqua molecules and carboxyl O atoms result in 3-D networks in the two complexes. The ESR spectra study of complex 1 shows that there is negligibly small long-range super-exchange interactions between the Cu(II) atoms via benzenecarboxylate bridging.  相似文献   

13.
B3LYP/6-311+G(2d,p), the density functional theory method of 98 package, is applied to study the hydrogen bonding of a series of linear (HCN)n and (HNC)n molecular clusters (for n=1–10). By the localization analysis methods we developed, pair-wised σ type H-bond orders and bond energies are calculated for each pair of the two near-by molecules in both (HCN)n and (HNC)n clusters. The calculated results are checked well with the shortening of N–H or C–H distance, the elongation of CH or NH bond distance, and the red shift of stretching frequencies of CH or NH. All pieces of evidence show that the central pair of the two molecules forms the strongest H bond when n of (HCN)n or (HNC)n is even, and the two middle pairs form the two strongest H bonds when n is odd. Two terminal pairs of HCN or HNC molecules always form the two weakest H-bonds in each molecular cluster. When comparing molecular cluster energies between (HCN)n and (HNC)n for various values of n, the well-known (HCN)n is found more stable than the related (HNC)n from energy calculation. However, if outcomes of H-bond local analysis are contrasted, our analysis significantly shows that inter-molecular H-bonds inside of (HNC)n clusters are much stronger than the corresponding H-bonds in (HCN)n with the same n. In comparing energy differences between these related clusters per monomer, [E(HNC)nE(HCN)n]/n is found decreasing monotonically as n increases. All pieces of evidence from this theoretical prediction indicate that (HNC)n with large n is probably constructed by its relative strong H-bonds.  相似文献   

14.
In this paper some synthetic procedures to obtain (η6-arene)metal derivatives are reviewed. The metal-atom-arene-vapor co-condensation technique is the most appropriate to generate complexes of polycyclic aromatic hydrocarbons or heterocycles. As far as the aluminium halide-mediated synthesis is concerned, two classes of reaction are observed. When AlX3 is used with a metal halide in the presence of an aromatic hydrocarbon in the absence of any reducing agent, AlX3 can function as a dehalogenating agent, to give ionic compounds of general formula [M(η6-arene)n](AlX4)m, or it can add across the M---X bond with formation of M(μ-X)nAlX4−n systems. In both cases the metal displays its typical oxidation state. However, the use of AlX3 in combination with aluminium (the Fischer-Hafner reducing system) affords ionic or covalent low-oxidation-state metal(η6-arene) complexes. Attention is focused on our most recent results concerning the synthesis, properties and reactivity of η6-arene derivatives of Group 4 and 5 elements, showing, inter alia, the first example of a tetraarylborate anion behaving as a 12-electron donor to one metal atom and low-valent η6-arene compounds as useful reagents in the inorganic and coordination chemistry of the corresponding metal in nonaqueous systems.  相似文献   

15.
Four novel tetranuclear macrocyclic complexes of the formula [(CuLi)3Fe](ClO4)3·3H2O (i=1–4, Li are the dianions of the [14]N4 and [15]N4 macrocyclic oxamides, namely 2,3-dioxo-5,6:13,14-dibenzo-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene, 2,3-dioxo-5,6:13,14-dibenzo-9-methyl-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene and 2,3-dioxo-5,6:14,15-dibenzo-7,13-bis(ethoxycarbonyl)-1,4,8,12-tetraazacyclotetradeca-7,12-diene] have been prepared and characterized. These complexes are the first examples of oxamido-bridged Cu(II)–Fe(III) heterometallic species. Cryomagnetic studies on [(CuL1)3Fe](ClO4)3·3H2O (1) and [(CuL3)3Fe](ClO4)3·3H2O (3) (77–300 K) revealed that the Cu(II) and Fe(III) ions interact antiferromagnetically through the oxamido bridge, with the exchange integral J=−30.8 cm−1 for 1 and J=−28.7 cm−1 for 3 based on . The interaction parameters have been compared with that of the related [Cu3Mn] compound.  相似文献   

16.
Trifunctional primary phosphines of the type 1,3,5-[PH2(CH2)n]3C6H3 (3b–d) were obtained via an Arbusov reaction between the 1,3,5-tris(bromoalkyl)benzenes 1b–d and P(OEt)3 followed by a reaction of the trisphosphonates 1,3,5-[(EtO)2P(O)(CH2)n]3C6H3 (2b–d) with LiAlH4. A straightforward conversion of these sensitive key phosphines 3b–d to the corresponding water-soluble ligands 1,3,5-tris[bis(hydroxymethyl)phosphinylalkyl]benzenes 4b–d and 1,3,5-tris[bis(2′-diethylphosphonatoethyl)phophinylalkyl]benzenes 5b–d was achieved by formylation with formaldehyde and hydrophosphonation with diethyl vinylphosphonate, respectively. A five component self-assembly consisting of three equivalents of the platinum(II) complex Cl2Pt(NCPh)2 and two equivalents of the ligands 5b–d under high dilution conditions resulted in the formation of the nanoscaled, water-soluble triplatinacyclophanes 6b–d in high yields. However, comparable reactions with the ligands 4b–d led only to polymeric materials, which are insoluble in all organic solvents and water. The structures of the metallacyclophanes 6b–d were elucidated by 31P{1H}-, 13C{1H}-, and 195Pt{1H}-NMR spectroscopic investigations.  相似文献   

17.
Molecular orbital calculations on 2,5- and 6F substituted catechol rings were performed in order to get insight into the electronic structure of these biologically very important molecules, - and charge distributions, dipole moments, localized orbitals and the effect of fluorine substituent on OH activity were computed for both neutral and anionic species. The resulting theoretical acidities compare well with experimental data while the charge distributions and electron density plots are in accord with classical concepts of theoretical organic chemistry.  相似文献   

18.
We have designed and utilized a simple molecular recognition system to study the substituent effects in aromatic interactions. Recently, we showed that 3‐ and 3,5‐disubstituted benzoyl leucine diethyl amides with aromatic rings of varying electronic character organized into homochiral dimers in the solid state through a parallel displaced π–π interaction and two hydrogen bonds, but no such homochiral dimerization was observed for the unsubstituted case. This phenomenon supports the hypothesis that substituents stabilize π–π interactions regardless of their electronic character. To further investigate the origin of substituent effects for π–π interactions, we synthesized and crystallized a series of 4‐substituted benzoyl leucine diethyl amides. Surprisingly, only two of the 4‐substituted compounds formed homochiral dimers. A comparison among the 4‐substituted compounds that crystallized as homochiral dimers and their 3‐substituted counterparts revealed that there are differences in regard to the geometry of the aromatic rings with respect to each other, which depend on the electronic nature and location of the substituent. The crystal structures of the homochiral dimers that showed evidence of direct, local interactions between the substituents on the aromatic rings also displayed nonequivalent dihedral angles in the individual monomers. The crystallographic data suggests that such “flexing” may be the result of the individual molecules orienting themselves to maximize the local dipole interactions on the respective aromatic rings. The results presented here can potentially have broad applicability towards the development of molecular recognition systems that involve aromatic interactions.  相似文献   

19.
Summary The retention indices of some monosubstituted benzenes, benzaldeyhdes and acetophenones have been determined on seven OV polymethylphenylsiloxane liquid phases. The interactions and forces that affect the separation of the isomers and their elution sequences are discussed, taking into account mesomeric and inductive effects of the substituents in the benzene ring and the dipole moments of these solutes. These phases are not very selective for the separation or the accurate assessment of the effect of substituent over the benzene nucleus. This may be explained by the presence of the considerable number of benzene nuclei integral to the structure of these phases.  相似文献   

20.
The dipole moment and polarizability changes have been determined from electroabsorption (EA) spectroscopy of solid films of fac tris(2-(phenyl)pyridinato,N,C2′)iridium (III) [Ir(ppy)3]. The maximum changes in the dipole moment |Δμ|S=(5.0±0.5) D/f (f is the local field correction factor: 1.3–1.7) accompany ground state to the lowest singlet, and |Δμ|T=(1.7±0.5) D/f ground state to the lowest triplet metal-to-ligand charge transfer (MLCT) excited states formation, while the average polarizability change Å3/f2 follows from the fitting procedure throughout the visible absorption spectrum range. The experimental values of |Δμ| as well as energy positions of the MLCT states correlate with the literature results of time-dependent density functional theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号