首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct HPLC method for the determination of acetyl-D-carnitine in acetyl-L-carnitine was investigated. The enantiomers were successfully separated on a SUMICHIRAL OA-6100 column, which has a ligand-exchange type of chiral moiety. The mobile phase consisted of an aqueous solution of copper (II) sulfate and sodium perchlorate. Successful enantioseparation seems to be achieved through the formation of not only the complex with copper (II) ion but also by ion-pairing with the perchlorate ion, because no enantioseparation was observed with the usual copper (II) mobile phase alone. Employing 2 mM aqueous CuSO4 solution containing 500 mM NaClO4, the enantiomers of acetylcarnitine eluted in the order of D- and L-forms within 15 min with R s = 1.92 and α = 1.11. The obtained LOQ and LOD values were 0.15 and 0.1%, respectively. The validated results were satisfactory for a practical quality control method for the enantiomeric purity determination of acetyl-L-carnitine.  相似文献   

2.
高效液相色谱手性流动相法拆分甲状腺素对映体   总被引:5,自引:0,他引:5  
运用高效液相色谱手性流动相法(HPLC-CMP)对影响甲状腺素对映体(D-,L-T4)分离方法的因素:三乙胺(TEA)浓度,流动相pH值,铜离子(Cu2+)浓度,L-脯氨酸(L-pro)浓度,柱温以及流动相的流速进行了系统的研究。同时,考察了色谱方法分离T4对映体的线性关系,精密度和准确度。线性响应范围为0.6~3.2 nmol (D-,L-T4),线性相关系数为rD-T4=0.9980,rL-T4=0.9990,日内和日间的精密度分别为RSD<2.3%(n=6),RSD<3.15%(n=5)。结果表明本实验所得的色谱条件较文献报道的优越,分离条件简单,重现性好。HPLC-CMP法测定甲状腺素对映体其意义在于该方法可为定量测定药品及人体血液中D-,L-T4两种异构体,为治疗药物监测(TDM)和药物不良反应监测(ADRs)提供了依据。  相似文献   

3.
Closantel is an antiparasitic drug marketed in a racemic form with one chiral center. It is meaningful to develop a method for separating and analyzing the closantel enantiomers. In this work, two enantiomeric separation methods of closantel were explored by normal-phase high-performance liquid chromatography. The influences of the chiral stationary phase (CSP) structure, the mobile phase composition, the nature and proportion of different mobile phase modifiers (alcohols and acids), and the column temperature on the enantiomeric separation of closantel were investigated in detail. The two enantiomers were successfully separated on the novel CSP of isopropyl derivatives of cyclofructan 6 and n-hexane-isopropanol-trifluoroacetic acid (97:3:0.1, v/v/v) as a mobile phase with a resolution (Rs) of about 2.48. The enantiomers were also well separated on the CSP of tris-carbamates of amylose with a higher Rs (about 3.79) when a mixture of n-hexane-isopropanol-trifluoroacetic acid (55:45:0.1, v/v/v) was used as mobile phase. Thus, the proposed separation methods can facilitate molecular pharmacological and biological research on closantel and its enantiomers.  相似文献   

4.
Ye Jiang  Zan Xie 《Chromatographia》2005,62(5-6):257-261
A simple method has been developed for analysis of ibandronate and related substances by ion-pair reversed-phase high-performance liquid chromatography (RPIC) with evaporative light-scattering detection (ELSD). After optimization of the chromatographic conditions satisfactory separation of the compounds was achieved on an Intersil C8 column with an isocratic mobile phase—8:4:88 (v/v) acetonitrile–methanol–12 mM ammonium acetate buffer containing 35 mM n-amylamine (pH 7.0). The mobile phase flow rate was 1.0 mL min?1. The calibration plot was linear in the range 352 to 1760 µg mL?1 for ibandronate. The precision and reproducibility were 0.3% and 0.5%, respectively. The average recovery of ibandronate was 100.4% and RSD was 0.6%. The method was validated and shown to be precise, accurate, and specific for assay of ibandronate in bulk material and dosage forms. The proposed liquid chromatographic method can be satisfactorily used for quality control of ibandronate.  相似文献   

5.
Simple procedures are presented for separating the enantiomers of α-methyldopa, 5-hydroxytryptophan, tryptophan, triiodothyronine and thyroxine, which require neither special sorbents nor difficult-to-obtain or unstable reagents. The method for α-methyldopa, 5-hydroxytryptophan and tryptophan is based on the use of L-phenylalanine copper complex as the chiral constituent of the mobile phase; LiChrosorb® RP-18 serves as the stationary phase. The procedure for triiodothyronine and thyroxine is grounded on the L-proline copper complex as the chiral reagent and LiChrosorb® Si 60 as the stationary phase. In all observed cases, the D-enantiomer is eluted prior to the respective L-enantiomer. Chirality inversion of the mobile phase (application of the D-phenylalanine copper complex) reverses the order of elution; a racemic eluent (DL-phenylalanine copper complex) leads to no separation. In addition to the enantiomers of α-amino acids, the enantiomers of α-hydroxy acids (mandelic acid) can be separated.  相似文献   

6.
Berkecz  R.  Ilisz  I.  Forr&#;  E.  F&#;l&#;p  F.  Armstrong  D. W.  P&#;ter  A. 《Chromatographia》2006,63(13):S29-S35
Direct reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of β-lactams. The enantiomers of 7 aryl-substituted β-lactams were separated on chiral stationary phases containing the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T) and teicoplanin aglycone (Chirobiotic TAG) at 10-°C increments in the range 5–45 °C, using different compositions of 0.1% aqueous triethylammonium acetate (pH 4.1)/methanol (v/v) as mobile phase. The mobile phase composition and temperature were varied to achieve baseline resolutions in a single chromatographic run. The dependence of the natural logarithms of the selectivity factors ln α on the inverse of temperature, 1/T, was used to determine the thermodynamic data on the enantiomers. The thermodynamic data revealed that all the compounds in this study undergo separation via the same enthalpy-driven chiral recognition mechanism. The different methods were compared in systematic chromatographic examinations. The effects of the organic modifier, the mobile phase composition and the temperature on the separation were investigated.  相似文献   

7.
HPLC method enabling chiral separation and determination of citalopram (CIT), a widely used antidepressant, and its synthetic precursor citadiol in one analysis was developed and validated. Moreover, supercritical fluid chromatography was also tested and was proved to be less effective for this separation purpose. The optimized HPLC system was composed of Chiralcel OD-H column and n-hexane/propane-2-ol/triethylamine 96/4/0.1 (v/v/v) as mobile phase, column temperature 25 °C, flow rate 1.0 mL min?1, UV detection at 250 nm. The effects of amount of propane-2-ol, triethylamine addition, and temperature on enantioselectivity and resolution of the enantiomers were evaluated. The method was found to be suitable for determination of the enantiomeric purity of CIT in bulk drugs. Enantiomers of CIT were determined in two commercially available pharmaceuticals.  相似文献   

8.
A simple, rapid, and robust chiral HPLC method has been developed and validated for separation of the enantiomers of epinephrine, l-1-(3,4-dihydroxyphenyl)-2-(methylamino)ethanol, an antihypertensive drug, in the bulk drug. The enantiomers were resolved on an amylose-based stationary phase with n-hexane–2-propanol–methanol–trifluoroacetic acid–diethylamine 90:05:05:0.2:0.2 (v/v) as mobile phase at a flow rate of 1.0 mL min?1. In the optimized method resolution between the enantiomers was not less than 3.0. The trifluoroacetic acid and diethylamine in the mobile phase were important for enhancing chromatographic efficiency and hence the resolution of the enantiomers. The method was extensively validated and proved to be robust. The calibration plot for the d enantiomer was highly linear over the concentration range 100–2,000 μg mL?1. The limits of detection and quantification for the d enantiomer were 0.15 and 0.45 μg mL?1, respectively. Recovery of the d enantiomer from bulk drug samples of epinephrine ranged between 99.5 and 101.5%. Epinephrine sample solution was stable for up to 48 h. The method was suitable for accurate quantitative determination of the d enantiomer in the bulk drug substance  相似文献   

9.
A stereoselective liquid chromatographic method to determine the enantiomers of ornidazole in human plasma and urine has been developed and validated. After addition of the internal standard (naproxen), samples were acidified and extracted with diethyl ether. The separation was performed on a Chiralcel OB-H column, using hexane-ethanol- glacial acetic acid (94:6:0.08, v/v) as the mobile phase. The method was validated for specificity, linearity, sensitivity, precision, accuracy and stability. For each enantiomer of ornidazole, linear calibration curves were obtained over the concentration range of 0.16–20 μg mL?1 in plasma and 0.32–20 μg mL?1 in urine. For both enantiomers of ornidazole in plasma and urine, the coefficient of variation for precision were consistently less than 12% and accuracy were within ±14% in terms of relative error. Application of the method to a preliminary pharmacokinetic study showed that this validated method was qualified for the direct determination of ornidazole enantiomers in human plasma and urine.  相似文献   

10.

Abstract  

The enantioseparation conditions of ligand exchange chromatography were examined using ofloxacin enantiomers. A C18 column was used with the mobile phase consisting of a methanol–water solution (containing different concentrations of l-isoleucine and copper sulfate) at flow rate of 0.5 cm3 min−1. The effect of different kinds and concentrations of ligands, bivalent ligand ions, and organic modifier, and temperature on enantioseparation were evaluated; the results showed that enantioselectivity was strongly affected by the ligand concentration of the mobile phase. Under the optimum conditions (methanol/water 20:80 v/v, containing 2.5 mmol dm−3 l-isoleucine and 0.6 mmol dm−3 Cu2+, room temperature), baseline separation of the two enantiomers was obtained with resolution of 1.32 in less than 30 min. The separation method was used to analyze the ofloxacin enantiomers in different commercial medicines.  相似文献   

11.
Ravi Bhushan  Charu Agarwal 《Chromatographia》2008,68(11-12):1045-1051
Direct resolution of the enantiomers of the racemic drugs ketamine and lisinopril has been achieved by TLC. Enantiomerically pure tartaric acid and mandelic acid were used as chiral impregnating reagents and as mobile phase additives. When (?)-mandelic acid was used as chiral impregnating reagent use of ethyl acetate–methanol–water 3:1:1 (v/v) as mobile phase enabled successful resolution of the enantiomers of both compounds. For lisinopril, the mobile phase acetonitrile–methanol–water–dichloromethane 7:1:1:0.5 (v/v) was successful when (+)-tartaric acid was used as impregnating agent. When (+)-tartaric acid was used as mobile phase additive the mobile phase acetonitrile–methanol(+)-tartaric acid (0.5% in water, pH 5)–glacial acetic acid 7:1:1.1:0.7 (v/v) enabled successful resolution of the enantiomers of lisinopril. The effects on resolution of temperature, pH, and the amount of chiral selector were also studied. The separated enantiomers were isolated and identified. Spots were detected with iodine vapour. LODs were 0.25 and 0.27 μg for each enantiomer of ketamine with (+)-tartaric acid and (?)-mandelic acid, respectively, whereas for lisinopril LODs were 0.14 and 0.16 μg for each enantiomer with (+)-tartaric acid (both conditions) and (?)-mandelic acid, respectively.  相似文献   

12.
The aim of the present study was to develop a fast, sensitive and reliable method for rapid screening of cephalosporin injectable dosage forms namely ceftazidime and ceftizoxime to the detection of counterfeit and substandard drugs that might be illegally commercialized. Ceftazidime, ceftizoxime and cefixime (IS) were separated in a X-Terra RP-18 column (250 × 4.60 mm ID × 5 ??) and DAD detector set at 290 and 260 nm. The mobile phase consisted of a mixture of methanol:water 20:80 (v/v) at a flow rate of 1.0 mL min?1. Additionally, in order to find the optimum pH value of separation the pK a values of studied compounds were determined by using two different methodologies. Aqueous pK a values of studied compounds have been determined by UV-spectrophotometry and liquid chromatography were used for the determination and direct characterization of the dissociation constants by using the dependence of the capacity factor on the pH of the mobile phase in 20% (v/v) methanol?Cwater binary mixture in which separation was performed. The pH of the mobile phase was adjusted with 25 mM H3PO4 to 3.2. The method was shown to be linear, sensible, accurate, and reproducible over the range of analysis and it can be used to pharmaceutical formulations containing a single active ingredient within a short analysis time.  相似文献   

13.
A simple and reliable liquid chromatographic method has been developed and validated for the determination of cefdinir in human urine and capsule samples. A chromatographic separation was achieved on a C18 column using a mobile phase consisting of potassium dihydrogen phosphate (10 mM, pH 4.5)–acetonitrile (90:10, v/v). Quantitation was achieved with UV detection at 285 nm, based on peak area with linear calibration curve at a concentration range of 0.7–39 µg mL?1. This method was successfully applied for the establishment of an urinary excretion pattern after oral dose.  相似文献   

14.
A simple, isocratic, normal phase chiral HPLC method was developed and validated for the enantiomeric separation of repaglinide, (S)-(+)-2-ethoxy-4-N [1-(2-piperidinophenyl)-3-methyl-1-butyl] aminocarbonylmethyl] benzoic acid, an antidiabetic in bulk drug substance. The enantiomers of repaglinide were resolved on a ChiralPak AD-H (amylose based stationary phase) column using a mobile phase consisting of n-hexane: 2-propanol:trifluoroacetic acid (95:5:0.2 v/v/v) at a flow rate of 1.0 mL min−1. The resolution between the enantiomers was found to be not >3.5 in optimized method. The presence of trifluoroacetic acid in the mobile phase played an important role, in enhancing chromatographic efficiency and resolution between the enantiomers. The developed method was extensively validated and proved to be robust. The calibration curve for (R)-enantiomer showed excellent linearity over the concentration range of 900 ng mL−1 (LOQ) to 6,000 ng mL−1. The limit of detection and limit of quantification for (R)-enantiomer were 300 and 900 ng mL−1, respectively. The percentage recovery of the (R)-enantiomer ranged between 98.3 and 101.05% in bulk drug samples of repaglinide. Repaglinide sample solution and mobile phase were found to be stable up to 48 h. The developed method was found to be enantioselective, accurate, precise and suitable for quantitative determination of (R)-enantiomer in bulk drug substance.  相似文献   

15.
A liquid chromatography method is described for the analysis of fluoxetine and norfluoxetine enantiomers in fungi cultures. The analytes were separated simultaneously by LC employing a serial system. The resolution was performed using a mobile phase of ethanol: 15 mM ammonium acetate buffer solution, pH 5.9: acetonitrile (77.5:17.5:5, v/v/v). UV detection was at 227 nm. Hexane: isoamyl alcohol (98:2, v/v) was used as extractor solvent. The calibration curves were linear over the concentration range of 12.5–3,750 ng mL?1 (r ≥ 0.996). The values for intra- and inter-day precision and accuracy were ≤10% for all analytes. The validated method was used to evaluate fluoxetine biotransformation to its mammalian metabolite, norfluoxetine, by selected endophytic fungi. Although the desired biotransformation was not observed in the conditions used here, the method could be used to evaluate the biotransformation of fluoxetine by other fungi or to be extended to other matrices with adequate procedures for sample preparation.  相似文献   

16.
Summary The separation of the D and L enantiomers of eighteen essential α amino acids has been investigated by ligand-exchange chromatography (LEC). The effect of column temperature on the retention times and resolution of individual amino acid enantiomers has been studied by varying the temperature from 25 to 50 °C for a mobile phase containing Cu2+ ions. By use of a temperature of 50 °C and Zn2+ in the mobile phase, eight of the eighteen amino acid enantiomers can be resolved sufficiently well for practical application. Only phenylalamine, tyrosine, and tryptophan can be separated by use of Ni2+ as complexation metal at 50 °C. LEC has been used to monitor the decarboxylation of racemic DL-aspartic acid byPseudomonas dacunhae. Analysis of DL amino acid enantiomers in different media was performed at column temperatures of 30 and 50°C by addition of 0.125 mM Cu2+ to the aqueous mobile phase. It was found that the analytical performance is most dependent on the identity of the metal used for complexation; the concentration of the metal was of secondary importance and the column temperature less important still.  相似文献   

17.
A stability-indicating LC method was developed for the simultaneous determination of ibuprofen and diphenhydramine citrate in pharmaceutical dosage forms. The chromatographic separation was achieved on an Inertsil ODS 3V, 150 × 4.6 mm, 5 μm, column. The mobile phase contained a mixture of 50 mM potassium dihydrogen phosphate buffer:acetonitrile:triethylamine:glacial acetic acid (55:45:0.2:0.2, v/v/v/v). This method allowed the determination of 2.85–9.14 mg mL?1 of ibuprofen and 0.54–1.73 mg mL?1 of diphenhydramine citrate, in a diluent consisting of pH 7.2, 50 mM potassium dihydrogen phosphate buffer:acetonitrile (40:60, v/v). The flow rate was 1.2 mL min?1 and the detection wavelength was 260 nm. The limit of detection for ibuprofen and diphenhydramine citrate was 1.72 and 0.54 μg mL?1 and the limit of quantification was 5.73 and 1.64 μg mL?1, respectively. This method was validated for accuracy, precision and linearity. The method was also found to be stability indicating.  相似文献   

18.
Direct chiral separation of the enantiomers of spirobrassinin, 1-methoxyspirobrassinin and ten novel cis- and trans-diastereoisomers of 2-amino analogs of indole phytoalexin 1-methoxyspirobrassinol methyl ether on macrocyclic glycopeptide-based chiral stationary phase (CSP) with teicoplanin (Chirobiotic T) was studied. Normal phase eluents containing n-hexane with modifiers ethanol and 2-propanol were used. The effects of mobile phase composition, structure of the analytes and temperature were investigated. Chiral resolution on teicoplanin CSP was achieved only in the case of trans-diastereoisomers. The van??t Hoff plots were found to show linear behavior in all cases. It was found that studied normal phase enantioseparations were enthalpy driven. The elution order of the enantiomers was determined in some cases.  相似文献   

19.
A sensitive liquid chromatography-tandem-mass spectrometry method was developed and validated for the determination of perospirone in human plasma, using quetiapine as internal standard. Plasma samples were extracted from 1 mL of plasma using n-hexane. Chromatographic separation was performed on an Agilent Zorbax SB C18 column with a mobile phase of 5 mM ammonium acetate solution-methanol (12:88, v/v, adjusted to pH 3.8 with glacial acetic acid) at a flow rate of 0.2 mL min?1. The chromatographic separation was achieved in less than 4.6 min. The linearity was established over the concentration range of 0.05–20 ng mL?1. Both of the intra- and inter-batch standard deviation was less than 9.8%. The method was successfully applied to study the pharmacokinetic parameters of perospirone hydrochloride tablets in healthy Chinese volunteers.  相似文献   

20.
A new and accurate chiral liquid chromatographic method has been developed for determination of the enantiomeric purity of montelukast sodium (R enantiomer) in bulk drugs and dosage forms. Normal phase chromatographic separation was performed on an immobilized amylose-based chiral stationary phase with n-hexane–ethanol–1,4-dioxane–trifluoroacetic acid–diethylamine 65:25:10:0.3:0.05 (v/v) as mobile phase at a flow rate of 1.0 mL min?1. The elution time was approximately 15 min. The resolution (R S) between the enantiomers was >3. The mobile phase additives trifluoroacetic acid and diethylamine played a key role in achieving chromatographic resolution between the enantiomers and also in enhancing chromatographic efficiency. Limits of detection and quantification for the S enantiomer were 0.07 and 0.2 μg, respectively, for a test concentration of montelukast sodium of 1,000 μg mL?1 and 10 μL injection volume. The linearity of the method for the S enantiomer was excellent (R 2 > 0.999) over the range from the LOQ to 0.3%. Recovery of the S enantiomer from bulk drug samples and dosage forms ranged from 97.0 to 103.0%, indicative of the high accuracy of the method. Robustness studies were also conducted. The sample solution stability of montelukast sodium was determined and the compound was found to be stable for a study period of 48 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号