首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To establish an extraction method for fenvaleric acid (FA) enantiomers using l-iso-butyl-l-tartaric esters and hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral selector, the distribution of FA enantiomers was examined in methanol aqueous solution containing HP-β-CD and 1,2-dichloroethane organic solution containing l-iso-butyl-l-tartaric esters. The influences of the concentration of l-iso-butyl-l-tartaric esters and HP-β-CD, organic diluent, pH, extraction temperature and the concentration of methanol aqueous solution on the partition coefficient (k) and separation factor (α) of FA were investigated. The experiment results showed that the complex formed by l-iso-butyl-l-tartaric esters with S-enantiomer is stabler than that with R-enantiomer. With the increase of the concentration of l-iso-butyl-l-tartaric ester, k and α increased; With the increase of the concentration of HP-β-CD, k increased firstly, and then decreased, but α increased all the while, k was the highest when the concentration of HP-β-CD was 4 mmol L?1. 1,2-dichloroethane organic diluent was better than the others. With the increase of pH, k and α decreased; with further increasing concentration of methanol aqueous solution, k and α decreased, k and α were the highest when the concentration of methanol aqueous solution was 10%. The extraction temperature had a great influence on k and α, too.  相似文献   

2.
The studies to improve the production of glutaryl-7-ACA from cephalosporin C are described in this paper. During the conversion of cephalosporin C to keto-adipyl-7-aminocephalosporonic acid by d-amino acid oxidase (d-AAO), with the simultaneous production of equimolar amount of hydrogen peroxide, an incomplete nonenzymatic conversion of the keto form into the glutaryl form occurs, where cephalosporin C as well asd-AAO are partly destroyed in the presence of hydrogen peroxide. d-AAO was immobilized to different carriers in order to achieve better enzyme stability. The activity of immobilizedd-AAO on manganese oxide remained above 100% during the first 9 h of a semicontinuous conversion of cephalosporin C. The presence of catalase coimmobilized with D-AAO and coupled to CNBr-activated Sepharose 4B improved the operation stability ofd-AAO. An additional approach for the continuous transformation of cephalosporin C used whole cells ofTrigonopsis variabilis, containingd-AAO, immobilized to magnetic iron oxide particles.  相似文献   

3.
The solubility of l-tartaric acid was measured in ethanol, propanol, isopropanol, n-butanol, acetone and acetonitrile in the temperature range 281.15 and 324.25 K under atmospheric pressure by a gravimetric method. The solubility of l-tartaric acid in those selected solvents increases with increasing temperature. The apparent molar enthalpies of solution of l-tartaric acid in the selected solvents were estimated from the solubility data. The solubility results were correlated with the van’t Hoff equation, the modified Apelblat equation, and the λh equation. Agreement with the experimental data was very good in all cases. The experimental results could be useful for optimizing the purification process of l-tartaric acid in industry.  相似文献   

4.
Glucose oxidase from Aspergillus niger, the specific enzyme for β-d-glucose oxidation, can also oxidize other related saccharides at very slow or negligible rates. The present study aimed to compare the kinetics of d-glucose oxidation using immobilized glucose oxidase on bead cellulose for the oxidation of related saccharides using the same biocatalyst. The significant differences were observed between the reaction rates for d-glucose and other saccharides examined. As a result, k cat/K M ratio for d-glucose was determined to be 42 times higher than d-mannose, 61.6 times higher than d-galactose, 279 times higher than d-xylose, and 254 times higher than for d-fructose and d-cellobiose. On the basis of these differences, the ability of immobilized glucose oxidase to remove d-glucose from d-cellobiose, d-glucose from d-xylose, and d-xylose from d-lyxose was examined. Immobilized catalase on Eupergit and mixed with immobilized glucose oxidase on bead cellulose or co-immobilized with glucose oxidase on bead cellulose was used for elimination of hydrogen peroxide from the reaction mixture. The accelerated elimination of d-glucose and d-xylose in the presence of co-immobilized catalase was observed. The co-immobilized glucose oxidase and catalase were able to decrease d-glucose or d-xylose content to 0–0.005% of their initial concentrations, while a minimum decrease of low oxidized saccharides d-xylose, d-cellobiose, and d-lyxose, respectively, was observed.  相似文献   

5.
d-Amino acid oxidase from the yeast Trigonopsis variabilis (TvDAAO) is widely used in fine organic synthesis, including the preparation of unnatural l-amino acids and α-keto acids. The analysis of the three-dimensional structure of TvDAAO was carried out with the aim of producing the enzyme specific to d-amino acids with bulky side chains. The analysis revealed the residue Phe54 at the entrance to the active site, which controls the substrate access to this site. The residue Phe54 was replaced by residues Ala, Ser, and Tyr. The cultivation of recombinant E. coli strains expressing TvDAAO mutants showed that the mutein with the Phe54Ala substitution had very low stability. Thus, the inactivation of the enzyme occured within 10 min after the cell disruption. The Phe54Ser TvDAAO and Phe54Tyr TvDAAO mutants were obtained as homogeneous preparations, and their thermal stability and catalytic properties were investigated. The introduction of Phe54Ser and Phe54Tyr substitutions resulted in additional stabilization of the protein macromolecule compared to the wild-type TvDAAO. Thus, the half-inactivation time for the mutant enzymes at 54 °C increased by a factor of 1.5 and 2, respectively. As in the case of wild-type TvDAAO, the thermal inactivation of the muteins proceeds via a two-step dissociative mechanism. The introduction of mutations led to a strong change in the substrate specificity profile. The mutants have no activity toward a series of d-amino acids (Phe54Ser TvDAAO toward d-Ala, d-Ser, d-Val, and d-Thr; Phe54Tyr TvDAAO toward d-Ser, d-Tyr, d-Thr, and d-Lys). The catalytic efficiency (the k cat/K M ratio) of the Phe54Ser TvDAAO mutant toward d-amino acids with bulky side chains (d-Lys, d-Asn, d-Phe, d-Tyr, d-Trp, and d-Leu) increased from 2.4 to 7.3 times.  相似文献   

6.
The homochiral metal-organic coordination polymer of the composition [{Pr(H2O)2}2-(d-tart)3]·H2O was synthesized by heating an aqueous solution of praseodymium(III) chloride and d-tartaric acid (d-H2tart) in the presence of KOH. The crystal structure of the polymer was determined by X-ray crystallography and confirmed by IR spectroscopy, thermogravimetry, and elemental analysis.  相似文献   

7.
Fifteen carbohydrates (d-mannose, d-glucose, d-galactose, methyl-α-d-glucose, l-rhamnose, d-xylose, d-fructose, d-arabinose, dulcitol, mannitol, β-maltose, α-lactose, melibiose, sucrose, and raffinose) and four cyclitols [l-(+)-bornesitol, myo-inositol, per-O-acetyl-1-l-(+)-bornesitol, and quinic acid] were assayed for in vitro ACE inhibition. Of these molecules, per-O-Acetyl-1-l-(+)-bornesitol, quinic acid, methyl-α-d-glucose, d-rhamnose, raffinose, and the disaccharides were determined to be either inactive or weak ACE inhibitors, whereas l-(+)-bornesitol, d-galactose, d-glucose, and myo-inositol exhibited significant ACE inhibition. Molecular docking studies were performed to investigate interactions between active compounds and human ACE (Protein Data Bank, PDB 1O83). The results of various calculations showed that all active sugars bind to the same enzyme region, which is a tunnel directed towards the active site. With the exception of myo-inositol (K i = 13.95 μM, IC50 = 449.2 μM), the active compounds presented similar K i and IC50 values. d-Galactose (K i = 19.6 μM, IC50 = 35.7 μM) and l-(+)-bornesitol (K i = 25.3 μM, IC50 = 41.4 μM) were the most active compounds, followed by d-glucose (K i = 32.9 μM, IC50 = 85.7 μM). Our docking calculations are in agreement with the experimental data and show a new binding region for sugar-like molecules, which may be explored for the development of new ACE inhibitors.  相似文献   

8.
Geometries, relative stabilities, and hydrogen bonds of l-ascorbic acid (LAA) and d-Erythroascorbate (DEAA) dimers as well as their S- and Se-substituted isomers in gas phase and water solvent are studied using density functional method. Furthermore, the hydrogen bond lengths in LAA and DEAA dimers are generally increased along with the binding dissociation energy of the dimers being decreased as apex O atoms in the five-membered C5 rings of LAA and DEAA dimers are substituted by S and Se atoms in gas phase and water solvent. Interestingly, one LAA dimer and its S- or Se-substituted isomer with four hydrogen bonds in gas and water solvent are the three-centers structures. In addition, the chemical bonding and charge distributions of all the dimers are discussed. A good agreement with available experimental results is reached.  相似文献   

9.
  1. Determination of Maltose. Maltose is hydrolyzed by the enzyme α-glucosidase into glucose, which is determined by the enzymes hexokinase and glucose-6-phosphate-dehydrogenase. α-Glucosidase is specific for oligosaccharides with α-1,4 and α-1,2 bonds.
  2. Determination of Starch and Glycogen. Starch and glycogen are splitted to glucose by the enzyme amylo-glucosidase. Starch has to be dissolved before enzymatic cleavage. A comparison of different methods for preparing starch solutions is given.
  3. Determination of d- and l-Lactate. It is possible to determine d-lactate and l-lactate with the specific enzymes d-lactate-dehydrogenase and l-lactate-dehydrogenase. By different samples it is shown that no equal quantities of d- and l-lactate were found in the analyzed foods.
  相似文献   

10.
d-Kynurenine (d-KYN), a metabolite of d-tryptophan, can serve as the bioprecursor of kynurenic acid (KYNA) and 3-hydroxykynurenine, two neuroactive compounds that are believed to play a role in the pathophysiology of several neurological and psychiatric diseases. In order to investigate the possible presence of d-KYN in biological tissues, we developed a novel assay based on the conversion of d-KYN to KYNA by purified d-amino acid oxidase (d-AAO). Samples were incubated with d-AAO under optimal conditions for measuring d-AAO activity (100 mM borate buffer, pH 9.0), and newly produced KYNA was detected by high-performance liquid chromatography (HPLC) with fluorimetric detection. The detection limit for d-KYN was 300 fmol, and linearity of the assay was ascertained up to 300 pmol. No assay interference was noted when other d-amino acids, including d-serine and d-aspartate, were present in the incubation mixture at 50-fold higher concentrations than d-KYN. Using this new method, d-KYN was readily detected in the brain, liver, and plasma of mice treated systemically with d-KYN (300 mg/kg). In these experiments, enantioselectivity was confirmed by determining total kynurenine levels in the same samples using a conventional HPLC assay. Availability of a sensitive, specific, and simple method for d-KYN measurement will be instrumental for evaluating whether d-KYN should be considered for a role in physiology and pathology.  相似文献   

11.
Thioglycosides derivatives of N-phenylmaleimide have been prepared by the reaction of derivatives of 1-thio-d-glucopyranose, d-galactopyranose, d-lactose, and d-maltose with 3,4-dichloro-N-phenylmaleimide. The reaction of 3,4-dichloro-N-phenyl maleimide with sugar thiols (protected or unprotected) took place by displacement of both chlorine atoms by sulfide nucleophile giving the corresponding bis-thioglycoside products.  相似文献   

12.
β-Aminopeptidases exhibit both hydrolytic and aminolytic (peptide bond formation) activities and have only been reported in bacteria. We identified a gene encoding the β-aminopeptidase homolog from a genome database of the filamentous fungus Aspergillus oryzae. The gene was overexpressed in A. oryzae, and the resulting recombinant enzyme was purified. Apart from bacterial homologs [β-Ala-para-nitroanilide (pNA)], the enzyme preferred d-Leu-pNA and d-Phe-pNA as substrates. Therefore, we designated this gene as d-stereoselective aminopeptidase A (damA). The purified recombinant DamA was estimated to be a hexamer and was composed of two subunits with molecular masses of 29.5 and 11.5 kDa, respectively. Optimal hydrolytic activity of DamA toward d-Leu-pNA was observed at 50 °C and pH 8.0. The enzyme was stable up to 60 °C and from pH 4.0–11.0. DamA also exhibited aminolytic activity, producing d-Leu-d-Leu-NH2 from d-Leu-NH2 as a substrate. In the presence of 3.0 M NaCl, the amount of pNA liberated from d-Leu-pNA by DamA was 3.1-fold higher than that in the absence of NaCl. Thus, DamA is a halophilic enzyme. The enzyme was utilized to synthesize several hetero-dipeptides containing a d-amino acid at the N-terminus as well as physiologically active peptides.  相似文献   

13.
In this study, we introduced a new strategy, feeding d-glucose, to overproduce extracellular 5-aminolevulinic acid (ALA) in the recombinant Escherichia coli. We investigated that the d-glucose concentration is dependent on extracellular ALA production. The results indicated that increasing d-glucose concentration in bacteria culture enhanced final cell density and ALA yield and simultaneously decreased the activities of ALA synthase (ALAS) and ALA dehydratase (ALAD); then, the inhibitory effect of d-glucose on ALAS activity was relieved with the metabolism of d-glucose. when 4.0 g/L d-glucose was added at late exponential phase; 1.46 g/L ALA was achieved in shaking culture, which is 47% or 109% higher than the ALA yields with 30 mM levulinic acid of ALAD inhibitor or no inhibitor. In jar fermenter, final extracellular ALA concentration reached 3.1 g/L by feeding with d-glucose.  相似文献   

14.
Escherichia coli is able to utilize l-galactonate as a sole carbon source. A metabolic pathway for l-galactonate catabolism is described in E. coli, and it is known to be interconnected with d-galacturonate metabolism. The corresponding gene encoding the first enzyme in the l-galactonate pathway, l-galactonate-5-dehydrogenase, was suggested to be yjjN. However, l-galactonate dehydrogenase activity was never demonstrated with the yjjN gene product. Here, we show that YjjN is indeed an l-galactonate dehydrogenase having activity also for l-gulonate. The K m and k cat for l-galactonate were 19.5?±?0.6 mM and 0.51?±?0.03 s?1, respectively. In addition, YjjN was applied for a quantitative detection of the both of these substances in a coupled assay. The detection limits for l-galactonate and l-gulonate were 1.65 and 10 μM, respectively.  相似文献   

15.
Six secondary metabolites from the methanolic extract of Sweetia panamensis (Fabaceae) bark were isolated and characterised. Along with the pyrones desmethylangonine β-d-O-glucopyranoside and desmethylangonine β-d-O-glucopyranosyl-(1→6)-O-β-d-glucopyranoside, already reported in this species, 5-O-caffeoylquinic acid (chlorogenic acid), 4-O-caffeoylquinic acid, 3-O-caffeoylquinic acid and the isoflavonoid 5-O-methylgenistein 7-O-β-d-glucopyranoside were isolated for the first time from S. panamensis. Additionally, an LC-ESI-MS qualitative analysis was performed and an ultra performance liquid chromatography (UPLC) method was developed and validated for the determination of these compounds. The UPLC method was applied to the quantitative analysis of plant samples. Pyrones and caffeoylquinic acids resulted to be the main compounds in the extract; in particular desmethylangonine β-d-O-glucopyranosyl-(1→6)-O-β-d-glucopyranoside was the most abundant compound.  相似文献   

16.
In our previous work the influence of water evaporation on Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectra of l-phenylalanine (l-phe) in a function of pH (Olsztynska et al. Appl. Spectrosc. 60(9):1040, (14)) was studied. The presence of symmetric dimers of hydrogen-bonded amino acid was observed when simultaneously CO2 ? ionised and COOH unionised forms of the amino acid appear in the solution (near pK 1). It is suggested that Near Infrared (NIR) radiation may induce partial protonation of CO2 ? groups at a neutral pH and formation the same type of dimers. The aim of this work was to study this hypothesis. Therefore, ATR-FTIR spectra of l-phe aqueous solution before and after NIR radiation (15?min., 700?C2,000?nm) were obtained as a continuation of our earlier studies. Spectral characteristic bands of l-phe were described. The vibrational spectroscopic study of l-phe showed that it undergoes photochemical reactions under NIR exposure. It has been found that the irradiation process indeed induces a protonation of polar groups of l-phe at neutral pH what leads to forming of neutral forms and as a consequence hydrogen bonded dimers ?CC=O···HOOC?C. Moreover, hydrophobic interactions strongly increase, what favours aggregation of l-phe molecules. The phenomenon is probably due to modifications of water structure around l-phe molecules. Intra- and intermolecular hydrogen bonds weaken which could favour aggregation and protonation of polar groups what induces also formation of symmetrical hydrogen bonds between protonated and deprotonated carboxylic groups.  相似文献   

17.
The aim of the present study was to determine the synergistic effects of diketopiperazines [cyclo-(l-Pro-l-Leu) (1), cyclo-(d-Pro-l-Leu) (2), and cyclo-(d-Pro-l-Tyr) (3)] purified from a Bacillus sp. N strain associated with entomopathogenic nematode Rhabditis (Oscheius) sp. on the growth of bacteria. The minimum inhibitory concentration and minimum bactericidal concentration of the diketopiperazines was compared with that of the standard antibiotics. The synergistic antibacterial activities of the combination of diketopiperazines against pathogenic bacteria were assessed using the checkerboard assay and time?Ckill methods. The results of the present study showed that the combination effects of diketopiperazines were predominately synergistic (FIC index <0.5). Furthermore, time?Ckill study showed that the growth of the tested bacteria was completely attenuated with 4?C12?h of treatment with 50:50 ratios of diketopiperazines. These results suggest that the combination of diketopiperazines may be microbiologically beneficial. The three diketopiperazines are nontoxic to normal human cell line (L231 lung epithelial) up to 200?m???g/ml. The in vitro synergistic activity of cyclo-(l-Pro-l-Leu), cyclo-(d-Pro-l-Leu), and cyclo-(d-Pro-l-Tyr) against bacteria is reported here for the first time. These findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (diketopiperazines).  相似文献   

18.
d-Alanine (d-Ala) is one of the naturally occurring d-amino acids in mammals, and its amount is known to have characteristic circadian changes. It is a candidate for a novel physiologically active substance and/or a biomarker, and the regulation mechanisms of the intrinsic amounts of d-Ala are expected to be clarified. In the present study, the effects of the possible factors controlling the d-Ala amounts, e.g., diet, d-amino acid oxidase (DAO) and intestinal bacteria, on the day–night changes in the intrinsic d-Ala amounts have been investigated using a highly sensitive and selective two-dimensional high-performance liquid chromatographic system combining a reversed-phase column and an enantioselective column. The circadian rhythm was not changed under fasting conditions. In the mice lacking d-amino acid oxidase activity (ddY/DAO- mice), clear day–night changes were still observed, suggesting that the factors controlling the d-Ala rhythm were not their food and DAO activity. On the other hand, in the germ-free mice, quite low amounts of d-Ala were detected compared with those in the control mice, indicating that the main origin of d-Ala in the mice is intestinal bacteria. Because the d-Ala amounts in the digesta containing intestinal bacteria did not show the day–night changes, the controlling factor of the circadian changes of the d-Ala amount was suggested to be the intestinal absorption.  相似文献   

19.
Treatment of the natural tri-, tetra-, and pentasaccharides, β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, α-l-Fucp-(1→2)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, and α-l-Fucp-(1→2)-[α-d-GalNAcp-(1→3)]-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-d-Glcp, which are glucose analogs of Lex, with ammonium carbamate in aqueous methanol gave the corresponding β-glycopyranosyl amines. After their N-acylation with N-Z-glycine N-hydroxysuccinimidyl ester (Z is benzyloxycarbonyl) with subsequent hydrogenolytic removal of Z-group, corresponding N-glycyl-β-glycopyranosyl amines were obtained in yields up to 70%.  相似文献   

20.
Stereoselective amino acid analysis has increasingly moved into the scope of interest of the scientific community. In this work, we report a study on the chiral recognition of d,l-Trp and d,l-His using l-Cys-capped gold nanoparticles (AuNPs) and copper(II) ion. In the l-Cys-capped AuNPs, the thiol group of the amino acid interacts with AuNPs through the formation of Au–S bond, whereas the α-amino and α-carboxyl groups of the surface-confined cysteine can coordinate the copper(II) ion, which in turn, binds the l- or d-amino acid present in solution forming diastereoisomeric complexes. The resulting systems have been characterized by UV–Vis spectra and dynamic light scattering measurements, obtaining different results for l- and d-Trp, as well as for l- and d-His. The knowledge of the solution equilibria of the investigated systems allowed us to accurately calculate in advance the concentrations of the species present in solution and to optimize the system performances, highlighting the pivotal role of copper(II) ion in the enantiodiscrimination processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号