首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K P SANTHOSH 《Pramana》2014,82(4):705-715
We present here, an overview and progress of the theoretical works on the isomeric state α decay, α decay fine structure of even–even, even–odd, odd–even and odd–odd nuclei, a study on the feasibility of observing α decay chains from the isotopes of the superheavy nuclei Z = 115 in the range 271 ≤A ≤ 294 and the isotopes of Z = 117 in the range 270 ≤A ≤ 301, within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives of the favoured and unfavoured α decay of nuclei in the range 67 ≤Z ≤ 91 from both the ground state and isomeric state, are in good agreement with the experimental data and the standard deviation of half-life is found to be 0.44. From the α fine structure studies done on various ranges of nuclei, it is evident that, for nearly all the transitions, the theoretical values show good match with the experimental values. This reveals that CPPMDN is successful in explaining the fine structure of even–even, even–odd, odd–even and odd–odd nuclei. Our studies on the α decay of the superheavy nuclei 271?294115 and 270?301117 predict 4 α chains consistently from 284,285,286115 nuclei and 5α chains and 3α chains consistently from 288?291117 and 292117, respectively. We thus hope that these studies on 284?286115 and 288?292117 will be a guide to future experiments.  相似文献   

2.
The process of fusion-fission of heavy and superheavy nuclei (SHE) with Z=82–122 formed in the reactions with 48Ca and 58Fe ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) and at the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL) using the time-of-flight spectrometer of fission fragments CORSET and the neutron multidetector DEMON. As a result of the experiments, mass and energy distributions (MED) of fission fragments; fission, quasifission, and evaporation residue cross sections; and multiplicities of neutrons and γ-quanta and their dependences on the mechanism of formation and decay of compound systems have been studied.  相似文献   

3.
A.Soylu 《中国物理C(英文版)》2019,43(7):074102-074102-11
Spontaneous fission(SF) with a new formula based on a liquid drop model is proposed and used in the calculation of the SF half-lives of heavy and superheavy nuclei(Z = 90–120). The predicted half-lives are in agreement with the experimental SF half-lives. The half-lives of decay(AD) for the same nuclei are obtained by using the Wentzel-Kramers-Brillouin(WKB) method together with Bohr-Sommerfeld(BS) quantization condition considering the isospin-dependent effects for the cosh potential. The decay modes and branching ratios of superheavy nuclei(Z =104-118) with experimental decay modes are obtained, and the modes are compared with the experimental ones and with the predictions found in the literature. Although some nuclei have predicted decay modes that are different from their experimental decay modes, decay modes same as the experimental ones are predicted for many nuclei. The SF and AD half-lives, branching ratios, and decay modes are obtained for superheavy nuclei(Z = 119–120) with unknown decay modes and compared with the predictions obtained in a previous study. The present results provide useful information for future experimental studies performed on both the AD and SF of superheavy nuclei.  相似文献   

4.
We study the effect of the entrance channel and the shell structure of reacting massive nuclei on the fusion mechanism and the formation of evaporation residues of heavy and superheavy nuclei. In the framework of the combined dinuclear system concept and advanced statistical model, we analyze the reactions 32S+182W, 48Ti+166Er and 60Ni+154Sm leading to 214Th*, and the reactions 48Ca+248Cm and the 48Ca+249Cf leading to the 296116 and 297118 compound nuclei, respectively.  相似文献   

5.
By using the statistical model and the characteristics for fission and neutron evaporation predicted in different theoretical models, the survival probabilities of superheavy nuclei are analyzed.  相似文献   

6.
The process of fusion-fission of heavy and superheavy nuclei (SHE) with Z=82?122 formed in the reactions with 48Ca and 58Fe ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) and at the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL) using the time-of-flight spectrometer of fission fragments CORSET and the neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions (MED) of fission fragments, fission, quasi-fission and evaporation residues cross sections, multiplicities of neutrons and γ quanta and their dependence on the mechanism of formation and decay of compound systems have been studied.  相似文献   

7.
8.
By comparing theoretical and experimental excitation functions of evaporation residues resulting from the same compound nucleus or heavy and superheavy nuclei, it is possible to understand the effect of the entrance channel and the shell structure of reacting nuclei on the fusion mechanism. The competition of complete fusion with the quasifission process is strongly related to the intrinsic fusion barrier B fus * and the quasifission barrier B qf as well as the size of the well in the nucleus-nucleus potential. In our calculations of the excitation functions for capture, fusion, and evaporation residues, we use the relevant variables such as mass asymmetry of nuclei in the entrance channel, potential energy surface, driving potential, spin distribution, and surviving probability of compound nucleus that are responsible for the mechanism of the fusion-fission process. As a result, we obtain a beam energy window for the capture of the nuclei before the system fuses and the Γnf ratio at each step along the deexcitation cascade of the compound nucleus. Calculations performed in the framework of the model taking into account the nuclear shell effect and shape of colliding nuclei allow us to reach useful conclusions about the mechanism of the fusion-fission process and the production of the evaporation residues. We analyze the 40Ar + 176Hf, 86Kr + 130Xe, and 124Sn + 92Zr reactions leading to 216Th*; the 32S + 182W and 60Ni + 154Sm reactions leading to 214Th*; the 48Ca + 248Cm reaction leading to the 296116 compound nucleus; and the 48Ca + 249Cf reaction leading to the 297118 compound nucleus.  相似文献   

9.
A statistical approach based on the Weisskopf evaporation theory has been developed to describe the deexcitation process of highly excited heavy and superheavy nuclei, in particular for the proton-rich nuclei. The excited nucleus is cooled by evaporating γ-rays, light particles(neutrons, protons, α etc) in competition with binary fission,in which the structure effects(shell correction, fission barrier, particle separation energy) contribute to the processes.The formation of residual nuclei is evaluated via sequential emission of possible particles above the separation energies.The available data of fusion-evaporation excitation functions in the ~(28)Si+~(198)Pt reaction can be reproduced nicely within the approach.  相似文献   

10.
The effects of the entrance channel and shell structure on the experimental evaporation residues have been studied by analyzing the 32S + 182W, 48Ti + 166Er and 60Ni + 154Sm reactions leading to 214Th*; the 40Ar + 181Ta reaction leading to 221Pa*; the 48Ca + 243Am, 248Cm, 249Cf reactions leading to the 291115, 296116 and 297118 superheavy compound nuclei, respectively. The fusion mechanism and the formation of evaporation residues of heavy and superheavy nuclei have been studied. In calculations of the excitation functions for capture, fusion and evaporation residues we used such characteristics as mass asymmetry of nuclei in the entrance channel, binding energies and shape of colliding nuclei, potential energy surface, driving potential, partial-fusion cross-sections and survival probability of the compound nucleus, ratio at each step along the de-excitation cascade of the compound nucleus. The calculations have allowed us to make useful conclusions about the mechanism of the fusion-fission process, which is in competition with the quasifission process, and the production of the evaporation residues.Received: 22 April 2003, Revised: 26 June 2003, Published online: 18 December 2003PACS: 25.70.Gh Compound nucleus - 25.70.-z Low and intermediate energy heavy-ion reactions - 27.80. + w - 27.90. + b   相似文献   

11.
12.
The new elements 110, 111 and 112 were synthesized and unambiguously identified in experiments at SHIP. Due to strong shell effects the dominant decay mode is not fission, but emission of alpha particles. Theoretical investigations predict that maximum shell effects should exist in nuclei near proton number 114 and neutron number 184. Our measurements give hope that isotopes of element 114 close to the island of spherical Superheavy Elements could be produced by fusion reactions using 208Pb as target. Systematic studies of the reaction cross-sections indicate that transfer of nucleons is the important process to initiate the fusion.  相似文献   

13.
Attention is focused onto the spurious state contributions inherent in existing equilibrium shape and fission half-life assessments of heavy and superheavy nuclei. The results indicate that compensation for such effects is essential if these calculations are to be considered reliable.  相似文献   

14.
周善贵 《物理》2014,43(12):817-825
研究超重原子核和超重元素,探索原子核的电荷和质量极限,是重要的科学前沿领域。超重原子核的存在源于量子效应。上个世纪60年代,理论预言存在一个以质子数114和中子数184为中心的超重稳定岛,这极大地促进了重离子加速器及相关探测设备的建造和重离子物理的发展。到目前为止, 实验室合成了118号及之前的超重元素。其中116号、114号和113号以下的新元素已被命名。利用重离子熔合反应合成更重的超重元素还面临着很多挑战,需要理论与实验密切结合,探索超重原子核性质与合成机制,以登上超重稳定岛。文章概要介绍了超重原子核和超重元素的研究背景、实验进展以及面临的挑战,并展望了未来的发展。  相似文献   

15.
The energy distribution of neutrons following muon capture in heavy nuclei is investigated. It is shown that the experimental high energy tail (E > 10 MeV) of the neutron distribution can be explained by a direct emission process.  相似文献   

16.
17.
Potential energy surfaces and fission barriers of superheavy nuclei are analyzed in a macroscopic-microscopic model. The Lublin-Strasbourg Drop (LSD) model is used to obtain the macroscopic part of the energy, whereas the shell and pairing energy corrections are evaluated using the Yukawa-folded potential; a standard flooding technique is utilized to determine barrier heights. A Fourier shape parametrization containing only three deformation parameters is shown to effectively reproduce the nuclear shapes of nuclei approaching fission. In addition, a non-axial degree of freedom is taken into account to better describe the structure of nuclei around the ground state and in the saddle region. In addition to the symmetric fission valley, a new highly asymmetric fission mode is predicted in most superheavy nuclei. The fission fragment mass distributions of the considered nuclei are obtained by solving 3D Langevin equations.  相似文献   

18.
Studies on some superheavy nuclei are performed. The α decay energies are calculated by an improved local binding energy formula, and the α decay half-lives are calculated by the Viola-Seaborg formula. Good agreements between theoretical and experimental results are reached.  相似文献   

19.
The concept of heavy-particle radioactivity (HPR) is changed to allow emitted particles with Z(e) > 28 from parents with Z > 110 and daughter around (208)Pb. Calculations for superheavy (SH) nuclei with Z = 104-124 are showing a trend toward shorter half-lives and larger branching ratio relative to α decay for heavier SHs. It is possible to find regions in which HPR is stronger than alpha decay. The new mass table AME11 and the theoretical KTUY05 and FRDM95 masses are used to determine the released energy. For 124 we found isotopes with half-lives in the range of ns to ps.  相似文献   

20.
Neglecting Coulomb effects we derive a very simple analytical result for nucleus-nucleus elastic scattering in an optical limit of the Glauber approximation which has the property that it does not diverge at large momentum transfers when the center-of-mass correlation function is retained and is more accurate and easier to apply than the commonly used expressions which involve numerical integrations. We then derive a corresponding analytical expression for the elastic scattering amplitude which includes the Coulomb effects arising from point charge incident and target nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号