首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stroboscopic Mirau microscopic interferometer system for measuring in-plane and out-of-plane periodic motions of microstructures is demonstrated. One full cycle of a periodic motion is divided into a number of motion phases. One sequence of interferograms with different phase shifting steps is collected at every motion phase by using stroboscopic imaging. A bright-field image can be extracted from one sequence of interferograms with the same motion phase. In-plane displacements are measured by applying an image matching method to all bright-field images, followed by a compensation for the relative positions of interferograms at the different motion phases, before calculating the phase distribution related to out-of-plane deformation. We demonstrate its capability for measuring a combination of out-of-plane deformation and in-plane displacement in a microresonator.  相似文献   

2.
An optical system for lensless Fourier transformed holographic interferometry is constructed to enable the measurement of minute displacements from nanometers to micrometers scale and to obtain corresponding strain distributions using a CCD camera with poor spatial resolution. Since a Fourier spectrum of an object beam is recorded on a hologram in this technique, the image reconstruction is easily performed with a single pass of 2-D fast Fourier transformation. Then, the map of the phase difference over the whole field is obtained by comparing two images before and after deformation. A suitable and effective unwrapping process is, however, inevitably required since the phase difference distribution is wrapped from −π to π in this technique. For phase unwrapping, the maximum spanning tree method is adopted here, which seeks a spanning tree that maximizes overall edge weights given by the cross amplitude. In-plane and out-of-plane displacements are obtained separately from the phase difference distributions at one's request. Moreover, in-plain strain is easily calculated from the in-plane displacement distribution.  相似文献   

3.
A digital speckle pattern interferometry system with automatic data analysis is used to measure the near-tip in-plane displacement field in a stainless steel specimen previously cracked by a fatigue test. In-plane displacements over a zone of 3.15 mm×3.15 mm are determined through the evaluation of the optical phase distribution. A theoretical solution developed for elasto-plastic materials is used to evaluate the obtained experimental results.  相似文献   

4.
冯秀  陈旭  徐楠  陈凡秀  谢欣  杨连祥 《应用光学》2013,34(3):457-462
采用离面位移测量精度达到10 nm~20 nm的电子散斑干涉测量系统验证了双目视觉数字散斑相关测量系统的离面位移测量精度。分别用电子散斑干涉测量系统和双目视觉数字散斑相关测量系统同时测量了平板离面位移,并对所测量的位移最大值进行了分析处理及比较。结果表明,双目视觉数字散斑相关测量系统的物体离面位移分布云图与电子散斑干涉测量系统的结果基本相同,且两者位移均方根相差为2.76 m~3.56 m,相对误差为4.59%~7.60%。因此,当被测量物体的离面位移大于4 m时,双目视觉Q400测量系统精度可达到电子散斑干涉测量系统的精度。  相似文献   

5.
Epitaxial thin films of the conductive ferromagnetic oxide SrRuO3 were grown on an (0 0 1) SrTiO3 (STO) substrate by using DC sputtering technique. The magnetic and magnetoresistive properties of the films were measured by applying the magnetic field both perpendicular (out-of-plane) and parallel (in-plane) to the film plane and ever maintaining the direction of the applied field perpendicular to that of the transport current. The films grown on an (0 0 1) STO substrate showed identical magnetization properties in two orthogonal crystallographic directions of the substrate, [1 0 0]S and [0 0 1]S (in-plane and out-of-plane geometry), which suggests the presence of a multi domain structure within the plane of the film. For such samples, no anisotropic field (hard axis) along de [0 0 1]s direction, i.e., perpendicular to the film-plane could be detected. Nevertheless, a distinguishable temperature dependent out-of-plane anisotropic magnetoresistance (MR) along with strong temperature dependent low field hysteretic MR(H) behavior was detected for the studied films. A negative MR ratio MR(T)=[ρ0H=9 T; T)−ρ( μ0H=0 T; T)]/ρ( μ0H=0 T; T) on the order of a few percent, with maximums of 6% and 4% (right at the Curie temperature, TC 160 K) was calculated for an in-plane and out-of plane measuring geometry, respectively. In addition there is an equally strong MR effect at low temperatures, which might be related to the temperature dependence of the magnetocrystalline anisotropy together with a magnetization rotation. Both the MR(T) behavior and the achieved values (except for T<30 K) are similar to those obtained on SrRuO3 films grown on 2° miscut (0 0 1) STO substrates with the current parallel to the field and parallel to the direction, which was identified as the easier axis for magnetization.  相似文献   

6.
We propose a grating interferometer for step-profile altitude difference measurement. There are two main characteristics in this interferometer. The first is that the intensity distribution of the interference pattern is independent of the wavelength of the laser-diode used. No change of the intensity distribution occurs when the wavelength fluctuates. The second is that the measuring range is much larger than the wavelength of the light source because the spatial period of the grating is much larger than the wavelength. Sinusoidal phase modulating interferometry is easily applied to detect the phase variation of the interference pattern by vibrating the grating sinusoidally. The thickness of a 3.5-inch disk is measured with an accuracy of less than 0.5 μm.  相似文献   

7.
This paper presents the design, fabrication and characterization of a QWIP photodetector capable of detecting simultaneously infrared radiation within near infrared (NIR), mid wavelength infrared (MWIR) and long wavelength infrared (LWIR). The NIR detection was achieved using interband transition while MWIR and LWIR were based on intersubband transition in the conduction band. The quantum well structure was designed using a computational tool developed to solve self-consistently the Schrödinger–Poisson equation with the help of the shooting method. Intersubband absorption in the sample was measured for the MWIR and LWIR using Fourier transform spectroscopy (FTIR) and the measured peak positions were found at 5.3 μm and 8.7 μm which agree well with the theoretical values obtained 5.0 μm and 9.0 μm for the two infrared bands which indicates the accuracy of the self-consistent model. The photodetectors were fabricated using a standard photolithography process with exposed middle contacts to allow separate bias and readout of signals from the three wavelength bands. The measured photoresponse gave three peaks at 0.84 μm, 5.0 μm and 8.5 μm wavelengths with approximately 0.5 A/W, 0.03 A/W and 0.13 A/W peak responsivities for NIR, MWIR and LWIR bands, respectively. This work demonstrates the possibility of detection of widely separated wavelength bands using interband and intersubband transitions in quantum wells.  相似文献   

8.
A phase shifting speckle interferometer based on a Mach-Zehnder geometry is presented. The displacement field is measured using an electro-optic phase shifting technique. An analytical investigation of the accuracy of the interferometer is performed by considering the most contributing error sources. It is shown that in the case of the use of a low power laser source, the geometrical aberration of the optical component is the main contribution to the systematic errors. The case of the sampling of a full measurement is investigated. It is demonstrated that the systematic error of the full measurement has the same statistics as those given by a simple acquisition. Experimental results are reported in the case of the measurement of the deformation of industrial connectors submitted to a crushing test. It is found that for a peak to valley of 32 μm, the trueness of the measurement appears higher than 160 nm.  相似文献   

9.
在电子散斑干涉中利用反相位法进行三维变形测量   总被引:4,自引:0,他引:4  
提出一种可将离面位移与面内位移分离的三维位移计算方法。在双光束电子散斑干涉系统中增加一路参考光,使这一路参考光为两光束所共用。两束光各自独立地对变形物体进行测量,分别计算相位分布,并对其中之一进行反相位计算。理论分析表明,对二路检测光所得到的相位进行相减运算,就能够较好地减少电子噪声的影响,分离面内位移场与离面位移,实现物体变形的三维测量。介绍该方法的原理,并利用典型实验证实了该方法的可行性。  相似文献   

10.
Reversible and irreversible domain wall (DW) motions have been investigated in La0.7Sr0.3MnO3 ceramic samples using frequency-response complex permeability with various amplitudes of AC field. We also examine the effects of temperature in the range from 293 to 368 K and transverse DC magnetic field with a maximum of 4.40×105 A/m on the real part of permeability (μ′). Two relaxations corresponding to reversible wall motions and domain rotations occur in low and high frequency regions, respectively. The irreversible DW displacements can be activated as the amplitude larger than the pinning field of 3 A/m, leading to an increase in μ′. The μ′ obeys a Rayleigh law at the temperature below 343 K or under DC field of less than 4.22×104 A/m. The Rayleigh constant η increases from 5.45×10−2 to 1.54×10−1 (A/m)−1 as the temperature rises from 293 to 343 K, and η decreases from 5.58×10−2 to 3.67×10−2 (A/m)−1 with increasing DC field from 1.99×103 to 4.22×104 A/m.  相似文献   

11.
本文提出一种基于双圆光栅径向剪切干涉仪的三维位移测量方法,其测量原理是径向剪切干涉仪所形成的莫尔条纹不仅由二维平面内位移决定,轴向位移会在+1和–1级莫尔条纹之间产生一个特定的相移.首先,基于标量衍射理论对双圆光栅径向剪切干涉仪的+1和–1级莫尔条纹强度分布进行推导,建立了三维位移量与莫尔条纹强度分布的精确解析关系;其次,在频谱分析的基础上,利用半圆环滤波器进行空间滤波,实现+1和–1级莫尔条纹的同时成像;然后,提出了从莫尔条纹图中定量提取三维位移的算法,并通过数值模拟进行验证;最后,实验结果验证了该方法测量平面内位移的最大绝对误差为4.8×10–3 mm,平均误差为2.0×10–4 mm,轴向位移的最大绝对误差为0.25 mm,平均误差为8.6×10–3 mm.该方法具有装置简单、测量精度高、非接触、瞬时测量等特点,可实现三维位移的同时测量.  相似文献   

12.
We report on the status of GaSb/InAs type-II superlattice diodes grown and fabricated at the Jet Propulsion Laboratory designed for infrared absorption 2–5 μm and 8–12 μm bands. Recent LWIR devices have produced detectivities as high as 8 × 1010 Jones with a differential resistance–area product greater than 6 Ohm cm2 at 80 K with a long wavelength cutoff of approximately 12 μm. The measured internal quantum efficiency of these front-side illuminated devices is close to 30% in the 10–11 μm range. MWIR devices have produced detectivities as high as 8 × 1013 Jones with a differential resistance–area product greater than 3 × 107 Ohm cm2 at 80 K with a long wavelength cutoff of approximately 3.7 μm. The measured internal quantum efficiency of these front-side illuminated MWIR devices is close to 40% in the 2–3 μm range at low temperature and increases to over 60% near room temperature.  相似文献   

13.
Under irradiating of the laser power of 2 kW, the thermal deformations of the silicon mirror substrates with phase change materials are experimentally measured and numerically analyzed by using finite element methods, respectively. The experimental results show that when the absorbed laser power is 120 W and the laser irradiating time gets to three seconds, the thermal distortion of the silicon mirror substrates with paraffin/carbon powder is 0.25 μm, that of the paraffin/aluminum powder 0.33 μm, and that of the paraffin/copper powder 0.37 μm. The numerical calculation coincides with the experimental results.  相似文献   

14.
We have measured the response of a 20×10 μm, 8 nm thin NiFe (80:20) permalloy film due to excitation by short in-plane magnetic field pulses. We will show that using a two-pulse-technique a complete control of the precessional motion of the magnetisation can be achieved on picosecond timescales. Furthermore, we will present numerical calculations which show that a complete suppression of magnetisation ringing after switching can only be realised by a cascade of short field pulses.  相似文献   

15.
The fine grid technique has been a standard engineering tool for measuring large strains for many years. The sample surface is marked with a grid, and the deformation of this grid allows the deformation of the sample to be monitored. However, it has never been easy quantitatively to analyse the strain across the whole of a specimen's surface. We describe here an automated approach in which digitised images of a sample prepared with a grid are analysed by the Fourier transform method. This provides phase maps which, when unwrapped, yield planes representing the two in-plane specimen coordinates. An iterative technique follows these deforming planes from one frame to the next as the specimen deforms, allowing displacement fields to be calculated. Numerical differentiation gives strains across the specimen surface. Gerchberg iteration is used to provide immunity to errors resulting from holes or tears in the specimen surface. The method is demonstrated on a propellant simulant containing burn holes (a cylinder of diameter 10 mm; grid PITCH = 76 μm), loaded in compression across a diameter. All in-plane components of strain are calculated up to strains of approximately one-third. Displacement accuracy is of order 1 μm.  相似文献   

16.
In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a four band, 640 × 512, 23 μm × 23 μm pixel array which we have subsequently integrated with a linear variable etalon (LVE) filter providing over 200 spectral bands across the 4–15.4 μm wavelength region. This effort was a collaboration between NASA’s Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL) and the Army Research Laboratory (ARL) sponsored by the Earth Science Technology Office of NASA. The QWIP array was fabricated by graded molecular beam epitaxial (MBE) growth that was specifically tailored to yield four distinct bands (FWHM): Band 1; 4.5–5.7 μm, Band 2; 8.5–10 μm, Band 3; 10–12 μm and Band 4; 13.3–14.8 μm. Each band occupies a swath that comprises 128 × 640 elements. The addition of the LVE (which is placed directly over the array) further divides the four “broad” bands into 209 separate spectral bands ranging in width from 0.02 μm at 5 μm to 0.05 μm at 15 μm. The detector is cooled by a mechanical cryocooler to 46 K. The camera system is a fully reflective, f/4.2, 3-mirror system with a 21° × 25° field of view. The project goals were: (1) develop the 4 band GaAs QWIP array; (2) develop the LVE and; (3) implement a mechanical cryocooler. This paper will describe the efforts and results of this undertaking with emphasis on the overall system characteristics.  相似文献   

17.
Moiré interferometry utilizes high frequency gratings to contour displacement components with a sensitivity of the order of 0·5 μ. This paper briefly reviews the technique for in-plane deformation measurement and its current applications to analyze adhesive bonded joints and composite deformation. The modified set-up for out-of-plane displacement measurement is described and used for fracture mechanics studies and vibration analysis. Finally, a set-up for simultaneous measurement of all three displacement components is described.  相似文献   

18.
Uncooled microbolometer detector: Recent developments at Ulis   总被引:1,自引:0,他引:1  
Uncooled infrared focal plane arrays are being developed for a wide range of thermal imaging applications. Therefore, to answer these markets, a 35 μm pixel-pitch uncooled IR detector technology has been developed enabling high performance 160 × 120 and 384 × 288 arrays production. Besides a wide-band version from uncooled 320 × 240/45 μm array has been also developed in order to address process control and more precisely industrial furnaces control. The ULIS amorphous silicon technology is well adapted to manufacture low cost detector in mass production. After some brief microbolometer technological background, we present the characterization of 35 μm pixel-pitch detector as well as the wide-band 320 × 240 infrared focal plane arrays with a pixel pitch of 45 μm. Information on the new 640 × 480 array with a pixel pitch of 25 μm is also presented.  相似文献   

19.
A mid-infrared free electron laser (FEL) has been constructed for energy science in the Institute of Advanced Energy, Kyoto University. The FEL system consists of a compact S-band Linac and an undulator to generate 4–13 μm coherent mid-infrared radiations. The Linac consists of a 4.5 cell rf gun with a thermionic cathode and a 3-m traveling-wave-type accelerator tube fed by 10 MW and 20 MW rf power, respectively. We have succeeded to produce 40 MeV, 40 mA and 3 μs electron beams. Last December, the 9.2 μm spontaneous emission from the undulator generated by 29.5 MeV electron beams was observed for the first time. Further optimization parameters of both the electron beam and the optical cavity are being pursued for an FEL lasing in the near future.  相似文献   

20.
The second harmonic generation (SHG) of light diffusely scattered by cold-deposited silver films is negligible with respect to the specular intensities. Therefore, a cold-deposited silver film is well approximated by a homogeneous effective medium. The intensities of SHG at 1.06 μm and the optical absorption at 0.53 μm depend on both the square of the internal effective field at 0.53 μm and a change in the same way when annealing the film. This can be understood by the assumption that SHG is also mainly following the electric field within the metal phase and surface contributions to SHG interfere destructively. This is corroborated by the observation that the SHG intensity does not show the ‘chemical first layer effects’ seen by surface-enhanced Raman scattering (SERS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号