首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new decomposition optimization algorithm, called path-following gradient-based decomposition, is proposed to solve separable convex optimization problems. Unlike path-following Newton methods considered in the literature, this algorithm does not require any smoothness assumption on the objective function. This allows us to handle more general classes of problems arising in many real applications than in the path-following Newton methods. The new algorithm is a combination of three techniques, namely smoothing, Lagrangian decomposition and path-following gradient framework. The algorithm decomposes the original problem into smaller subproblems by using dual decomposition and smoothing via self-concordant barriers, updates the dual variables using a path-following gradient method and allows one to solve the subproblems in parallel. Moreover, compared to augmented Lagrangian approaches, our algorithmic parameters are updated automatically without any tuning strategy. We prove the global convergence of the new algorithm and analyze its convergence rate. Then, we modify the proposed algorithm by applying Nesterov’s accelerating scheme to get a new variant which has a better convergence rate than the first algorithm. Finally, we present preliminary numerical tests that confirm the theoretical development.  相似文献   

2.
We consider stochastic discrete optimization problems where the decision variables are nonnegative integers. We propose and analyze an online control scheme which transforms the problem into a surrogate continuous optimization problem and proceeds to solve the latter using standard gradient-based approaches, while simultaneously updating both the actual and surrogate system states. It is shown that the solution of the original problem is recovered as an element of the discrete state neighborhood of the optimal surrogate state. For the special case of separable cost functions, we show that this methodology becomes particularly efficient. Finally, convergence of the proposed algorithm is established under standard technical conditions; numerical results are included in the paper to illustrate the fast convergence of this approach.  相似文献   

3.
The mirror descent algorithm (MDA) was introduced by Nemirovsky and Yudin for solving convex optimization problems. This method exhibits an efficiency estimate that is mildly dependent in the decision variables dimension, and thus suitable for solving very large scale optimization problems. We present a new derivation and analysis of this algorithm. We show that the MDA can be viewed as a nonlinear projected-subgradient type method, derived from using a general distance-like function instead of the usual Euclidean squared distance. Within this interpretation, we derive in a simple way convergence and efficiency estimates. We then propose an Entropic mirror descent algorithm for convex minimization over the unit simplex, with a global efficiency estimate proven to be mildly dependent in the dimension of the problem.  相似文献   

4.
An optimal method for stochastic composite optimization   总被引:1,自引:0,他引:1  
This paper considers an important class of convex programming (CP) problems, namely, the stochastic composite optimization (SCO), whose objective function is given by the summation of general nonsmooth and smooth stochastic components. Since SCO covers non-smooth, smooth and stochastic CP as certain special cases, a valid lower bound on the rate of convergence for solving these problems is known from the classic complexity theory of convex programming. Note however that the optimization algorithms that can achieve this lower bound had never been developed. In this paper, we show that the simple mirror-descent stochastic approximation method exhibits the best-known rate of convergence for solving these problems. Our major contribution is to introduce the accelerated stochastic approximation (AC-SA) algorithm based on Nesterov’s optimal method for smooth CP (Nesterov in Doklady AN SSSR 269:543–547, 1983; Nesterov in Math Program 103:127–152, 2005), and show that the AC-SA algorithm can achieve the aforementioned lower bound on the rate of convergence for SCO. To the best of our knowledge, it is also the first universally optimal algorithm in the literature for solving non-smooth, smooth and stochastic CP problems. We illustrate the significant advantages of the AC-SA algorithm over existing methods in the context of solving a special but broad class of stochastic programming problems.  相似文献   

5.
In this paper we study optimization problems with second-order stochastic dominance constraints. This class of problems allows for the modeling of optimization problems where a risk-averse decision maker wants to ensure that the solution produced by the model dominates certain benchmarks. Here we deal with the case of multi-variate stochastic dominance under general distributions and nonlinear functions. We introduce the concept of ${\mathcal{C}}$ -dominance, which generalizes some notions of multi-variate dominance found in the literature. We apply the Sample Average Approximation (SAA) method to this problem, which results in a semi-infinite program, and study asymptotic convergence of optimal values and optimal solutions, as well as the rate of convergence of the feasibility set of the resulting semi-infinite program as the sample size goes to infinity. We develop a finitely convergent method to find an ${\epsilon}$ -optimal solution of the SAA problem. An important aspect of our contribution is the construction of practical statistical lower and upper bounds for the true optimal objective value. We also show that the bounds are asymptotically tight as the sample size goes to infinity.  相似文献   

6.
We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by an arbitrary monotone function, which allows to model risk-aversion in a very individual way. We address this class of convex mixed-integer minimization problems by designing a branch-and-bound algorithm, where at each node, the continuous relaxation is solved by a non-monotone Frank–Wolfe type algorithm with away-steps. Experimental results on portfolio optimization problems show that our approach can outperform the MISOCP solver of CPLEX 12.6 for instances where a linear risk-weighting function is considered.  相似文献   

7.
In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints, which are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on-the-fly within an efficient solution approach. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm. These assumptions are general enough and cover all problems with column-dependent-rows studied in the literature up until now to the best of our knowledge. We then introduce in detail a set of pricing subproblems, which are used within the proposed column-and-row generation algorithm. This is followed by a formal discussion on the optimality of the algorithm. To illustrate our approach, the paper is concluded by applying the proposed framework to the multi-stage cutting stock and the quadratic set covering problems.  相似文献   

8.
This paper considers a general class of continuous, nonlinear, and nonseparable knapsack problems, special cases of which arise in numerous operations and financial contexts. We develop important properties of optimal solutions for this problem class, based on the properties of a closely related class of linear programs. Using these properties, we provide a solution method that runs in polynomial time in the number of decision variables, while also depending on the time required to solve a particular one-dimensional optimization problem. Thus, for the many applications in which this one-dimensional function is reasonably well behaved (e.g., unimodal), the resulting algorithm runs in polynomial time. We next develop a related solution approach to a class of continuous, nonlinear, and nonseparable multiple-choice knapsack problems. This algorithm runs in polynomial time in both the number of variables and the number of variants per item, while again dependent on the complexity of the same one-dimensional optimization problem as for the knapsack problem. Computational testing demonstrates the power of the proposed algorithms over a commercial global optimization software package.  相似文献   

9.
Many real applications can be formulated as nonlinear minimization problems with a single linear equality constraint and box constraints. We are interested in solving problems where the number of variables is so huge that basic operations, such as the evaluation of the objective function or the updating of its gradient, are very time consuming. Thus, for the considered class of problems (including dense quadratic programs), traditional optimization methods cannot be applied directly. In this paper, we define a decomposition algorithm model which employs, at each iteration, a descent search direction selected among a suitable set of sparse feasible directions. The algorithm is characterized by an acceptance rule of the updated point which on the one hand permits to choose the variables to be modified with a certain degree of freedom and on the other hand does not require the exact solution of any subproblem. The global convergence of the algorithm model is proved by assuming that the objective function is continuously differentiable and that the points of the level set have at least one component strictly between the lower and upper bounds. Numerical results on large-scale quadratic problems arising in the training of support vector machines show the effectiveness of an implemented decomposition scheme derived from the general algorithm model.  相似文献   

10.
In this article, we study a class of problems where the sum of truncated convex functions is minimized. In statistical applications, they are commonly encountered when ?0-penalized models are fitted and usually lead to NP-Hard non-convex optimization problems. In this article, we propose a general algorithm for the global minimizer in low-dimensional settings. We also extend the algorithm to high-dimensional settings, where an approximate solution can be found efficiently. We introduce several applications where the sum of truncated convex functions is used, compare our proposed algorithm with other existing algorithms in simulation studies, and show its utility in edge-preserving image restoration on real data.  相似文献   

11.
Since Non-negative Matrix Factorization (NMF) was first proposed over a decade ago, it has attracted much attention, particularly when applied to numerous data analysis problems. Most of the existing algorithms for NMF are based on multiplicative iterative and alternating least squares algorithms. However, algorithms based on the optimization method are few, especially in the case where two variables are derived at the same time. In this paper, we propose a non-monotone projection gradient method for NMF and establish the convergence results of our algorithm. Experimental results show that our algorithm converges to better solutions than popular multiplicative update-based algorithms.  相似文献   

12.
Lee  Ching-pei 《Mathematical Programming》2023,201(1-2):599-633

For regularized optimization that minimizes the sum of a smooth term and a regularizer that promotes structured solutions, inexact proximal-Newton-type methods, or successive quadratic approximation (SQA) methods, are widely used for their superlinear convergence in terms of iterations. However, unlike the counter parts in smooth optimization, they suffer from lengthy running time in solving regularized subproblems because even approximate solutions cannot be computed easily, so their empirical time cost is not as impressive. In this work, we first show that for partly smooth regularizers, although general inexact solutions cannot identify the active manifold that makes the objective function smooth, approximate solutions generated by commonly-used subproblem solvers will identify this manifold, even with arbitrarily low solution precision. We then utilize this property to propose an improved SQA method, ISQA \(^{+}\), that switches to efficient smooth optimization methods after this manifold is identified. We show that for a wide class of degenerate solutions, ISQA \(^{+}\) possesses superlinear convergence not only in iterations, but also in running time because the cost per iteration is bounded. In particular, our superlinear convergence result holds on problems satisfying a sharpness condition that is more general than that in existing literature. We also prove iterate convergence under a sharpness condition for inexact SQA, which is novel for this family of methods that could easily violate the classical relative-error condition frequently used in proving convergence under similar conditions. Experiments on real-world problems support that ISQA \(^{+}\) improves running time over some modern solvers for regularized optimization.

  相似文献   

13.
We present a new methodology to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). Typically these problems include an upper planning-level optimization with some discrete decision variables (eg, build/don’t build) as well as a lower operations-level problem often described by an optimization or nonlinear complementarity problem. This lower-level problem may also include some discrete variables. MPECs are very challenging problems to solve and the inclusion of integrality constraints makes this class of problems even more computationally difficult. We develop a new variant of the Benders algorithm combined with a heuristic procedure that decomposes the domain of the upper-level discrete variables to solve the resulting DC-MPECs. We provide convergence theory as well as a number of numerical examples, some derived from energy applications, to validate the new method. It should be noted that the convergence theory applies if the heuristic procedure correctly identifies a decomposition of the domain so that the lower-level problem's optimal value function is convex. This is challenging but our numerical results are positive.  相似文献   

14.
In solving certain optimization problems, the corresponding Lagrangian dual problem is often solved simply because in these problems the dual problem is easier to solve than the original primal problem. Another reason for their solution is the implication of the weak duality theorem which suggests that under certain conditions the optimal dual function value is smaller than or equal to the optimal primal objective value. The dual problem is a special case of a bilevel programming problem involving Lagrange multipliers as upper-level variables and decision variables as lower-level variables. Another interesting aspect of dual problems is that both lower and upper-level optimization problems involve only box constraints and no other equality of inequality constraints. In this paper, we propose a coevolutionary dual optimization (CEDO) algorithm for co-evolving two populations—one involving Lagrange multipliers and other involving decision variables—to find the dual solution. On 11 test problems taken from the optimization literature, we demonstrate the efficacy of CEDO algorithm by comparing it with a couple of nested smooth and nonsmooth algorithms and a couple of previously suggested coevolutionary algorithms. The performance of CEDO algorithm is also compared with two classical methods involving nonsmooth (bundle) optimization methods. As a by-product, we analyze the test problems to find their associated duality gap and classify them into three categories having zero, finite or infinite duality gaps. The development of a coevolutionary approach, revealing the presence or absence of duality gap in a number of commonly-used test problems, and efficacy of the proposed coevolutionary algorithm compared to usual nested smooth and nonsmooth algorithms and other existing coevolutionary approaches remain as the hallmark of the current study.  相似文献   

15.
This paper introduces a new cutting plane method for two-stage stochastic mixed-integer programming (SMIP) called Fenchel decomposition (FD). FD uses a class of valid inequalities termed, FD cuts, which are derived based on Fenchel cutting planes from integer programming. First, we derive FD cuts based on both the first and second-stage variables, and devise an FD algorithm for SMIP and establish finite convergence for binary first-stage. Second, we derive FD cuts based on the second-stage variables only and use an idea from disjunctive programming to lift the cuts to the higher dimension space including the first-stage variables. We then devise an alternative algorithm (FD-L algorithm) based on the lifted FD cuts. Finally, we report on computational results based on several test instances from the literature involving the special structure of knapsack problems with nonnegative left-hand side coefficients. The results are promising and show that both algorithms can outperform a standard direct solver and a disjunctive decomposition algorithm on large-scale instances. Furthermore, the FD-L algorithm provides better performance than the FD algorithm in general. Since Fenchel cuts can be computationally expensive in general and are best suited for problems with special structure, both algorithms exploit the special structure of the test instances by reducing the size of the cut generation problems based on the number of nonzero components in the non-integer solution that needs to be cut off.  相似文献   

16.
We discuss the convergence of a decomposition branch-and-bound algorithm using Lagrangian duality for partly convex programs in the general form. It is shown that this decomposition algorithm has all convergence properties as any known branch-and-bound algorithm in global optimization under usual assumptions. Thus, some strict assumptions discussed in the literature are avoidable.  相似文献   

17.
The subject of this article is a class of global optimization problems, in which the variables can be divided into two groups such that, in each group, the functions involved have the same structure (e.g. linear, convex or concave, etc.). Based on the decomposition idea of Benders (Ref. 1), a corresponding master problem is defined on the space of one of the two groups of variables. The objective function of this master problem is in fact the optimal value function of a nonlinear parametric optimization problem. To solve the resulting master problem, a branch-and-bound scheme is proposed, in which the estimation of the lower bounds is performed by applying the well-known weak duality theorem in Lagrange duality. The results of this article concentrate on two subjects: investigating the convergence of the general algorithm and solving dual problems of some special classes of nonconvex optimization problems. Based on results in sensitivity and stability theory and in parametric optimization, conditions for the convergence are established by investigating the so-called dual properness property and the upper semicontinuity of the objective function of the master problem. The general algorithm is then discussed in detail for some nonconvex problems including concave minimization problems with a special structure, general quadratic problems, optimization problems on the efficient set, and linear multiplicative programming problems.  相似文献   

18.
一类连续函数模拟退火算法及其收敛性分析   总被引:11,自引:0,他引:11  
高维连续函数的全局优化问题普遍存在于计算生物学、计算化学等领域.针对这类问题和现有连续函数模拟退火算法的某些不足,本文给出了一类改进的模拟退火算法.采用一种简单的方法证明了算法的全局收敛性.数值结果表明,对于高维连续函数,该算法能够快速有效地收敛到全局最优点,比较了两种新解产生方法的试验结果。  相似文献   

19.
We consider a class of unbiased Monte Carlo estimators and develop an efficient algorithm to produce the distribution of the optimal random truncation level. We establish the convergence and optimality results of the associated algorithm and also derive its exact complexity. We find this algorithm has a much lower complexity as compared to the existing one in the literature. The proposed algorithm is also applicable to optimization problems arising in supply chain management, such as economic reorder interval problem.  相似文献   

20.
We propose a simple exact algorithm for solving the generalized assignment problem. Our contribution is twofold: we reformulate the optimization problem into a sequence of decision problems, and we apply variable-fixing rules to solve these effectively. The decision problems are solved by a simple depth-first lagrangian branch-and-bound method, improved by our variable-fixing rules to prune the search tree. These rules rely on lagrangian reduced costs which we compute using an existing but little-known dynamic programming algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号