首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterned Self-Assembled Monolayers (SAMs) promoting both homeotropic and planar degenerate alignment of 6CB and 9CB in their nematic phase were created using microcontact printing of functionalized organothiols on gold films. The effects of a range of different pattern geometries and sizes were investigated, including stripes, circles and checkerboards. Evanescent wave ellipsometry was used to study the orientation of the liquid crystal (LC) on these patterned surfaces during the isotropic-nematic phase transition. Pretransitional growth of a homeotropic layer was observed on 1 µm homeotropic aligning stripes, followed by a homeotropic monodomain state prior to the bulk phase transition. Accompanying Monte Carlo simulations of LCs aligned on nanoscale-patterned surfaces were also performed. These simulations also showed the presence of the homeotropic monodomain state prior to the transition.  相似文献   

2.
《Liquid crystals》1998,25(2):199-206
The orientational behaviour of nematic compounds having twin phenylbenzoate mesogens was examined under a wide range of a.c. electric fields (0-2 V mum-1 and 10Hz-50 kHz). For this study, crossed polarizing optical microscopy (POM) and real-time X-ray diffraction (RTXRD) measurements were employed to investigate optical and orientational response. These nematic compounds have a positive dielectric anisotropy and a relatively low epsilon// relaxation frequency which allowed study in both homeotropic and planar orientations over a controllable frequency range. The optical behaviour and X-ray results corresponded well, providing a tool for understanding the orientational behaviour of these liquid crystals. For homeotropic alignment, an electric field of over 1 V mum-1 was required in order to obtain good orientation. However, homeotropic orientation depended on a delicate balance between thermal fluctuations and dielectric torque imposed by the electric field, which are both strongly related to the elasticity of the LC domains. Due to this effect, the highest orientation parameter achieved for homeotropic orientation was only 0.48, which indicated that this state was still non-equilibrium. On the other hand, for planar orientation, a uniform texture with orientation parameter of 0.65 was easily obtained even at electric fields as low as 0.2 V mum-1. The application of an electric field stronger than 1 V mum-1 induced a distortion in the texture, and reduced the orientation parameter to 0.45 for planar alignment.  相似文献   

3.
ABSTRACT

In order to produce liquid crystal (LC) with high birefringence (Δn) in the THz band, eight LC monomers were designed and synthesized. We formulate two mixtures (LC S200-2 and E7-2) by adding eight LC monomers to two commercial LCs (S200 and E7), respectively. The dielectric constants of the mixture LCs were measured using the frequency selective surface (FSS) in the region from 90 to 140 GHz. We compare the simulated results with the experimental measurements and determine the dielectric constants of the LCs. The dielectric anisotropy (Δε) of the nematic S200-2 and E7-2 LC mixtures are 16.4% and 16.3% higher than that of the commercial S200 and E7 LCs, respectively. The results show the frequency tunability of the two LC mixtures is greater than that of the commercial LCs.  相似文献   

4.
《Supramolecular Science》1998,5(5-6):649-655
Liquid crystal (LC) alignment techniques based on various kinds of ultrathin organized molecular films are reviewed. The mechanisms of LC alignment on the organized films are discussed. For the homeotropic alignment of LCs the main anchoring mechanism is due to the dipole–dipole interaction between polar groups of an aligning agent and LC molecules while the homogeneous alignment is mainly attributed to the orientation of polymer chains or polymer aggregates. An experimental system for an anchoring transition induced by a conformation change of aligning molecules is introduced. Finally the AFM experimental observations on the rubbed polymer films and its mechanisms are summarized.  相似文献   

5.
ABSTRACT

The two-dimensional graphene-honeycomb structure can interact with the liquid crystal’s (LC) benzene rings through π–π electron stacking. This LC–graphene interaction gives rise to a number of interesting physical and optical phenomena in the LC. In this paper, we present a combination of a review and original research of the exploration of novel themes of LC ordering at the nanoscale graphene surface and its macroscopic effects on the LC’s nematic and smectic phases. We show that monolayer graphene films impose planar alignment on the LC, creating pseudo-nematic domains (PNDs) at the surface of graphene. In a graphene-nematic suspension, these PNDs enhance the orientational order parameter, exhibiting a giant enhancement in the dielectric anisotropy of the LC. These anisotropic domains interact with the external electric field, resulting in a non-zero dielectric anisotropy in the isotropic phase as well. We also show that graphene flakes in an LC reduce the free ion concentration in the nematic media by an ion-trapping process. The reduction of mobile ions in the LC is found to have subsequent impacts on the LC’s rotational viscosity, allowing the nematic director to respond quicker on switching the electric field on and off. In a ferroelectric LC (smectic-C* phase), suspended graphene flakes enhance the spontaneous polarisation by improving the tilted smectic-C* ordering resulting from the π–π electron stacking. This effect accelerates the ferroelectric-switching phenomenon. Graphene can possess strain chirality due to a soft shear mode. This surface chirality of graphene can be transmitted into LC molecules exhibiting two types of chiral signatures in the LCs: an electroclinic effect (a polar tilt of the LC director perpendicular to, and linear in, an applied electric field) in the smectic-A phase, and a macroscopic helical twist of the LC director in the nematic phase. Finally, we show that a graphene-based LC cell can be fabricated without using any aligning layers and ITO electrodes. Graphene itself can be used as the electrodes as well as the aligning layers, obtaining an electro-optic effect of the LC inside the cell.  相似文献   

6.
ABSTRACT

The properties of the thin films of liquid crystal (LC) molecules can be governed easily by external fields. The anisotropic structure of the LC molecules has a large impact on the electrical and optical properties of the film. The Langmuir monolayer (LM) of LC molecules at the air–water interface is known to exhibit a variety of surface phases which can be transferred onto a solid substrate using the Langmuir?Blodgett (LB) technique. Here, we have studied the LM and LB films of asymmetrically substituted bent-core LC molecules. The morphology of LB film of the molecules is found to be a controlling parameter for aligning bulk LC in the nematic phase. It was found that the LB films of the bent-core molecules possessing defects favour the planar orientation of nematic LC, whereas the LB films with fewer defects show homeotropic alignment. The defect in LB films may introduce splay or bend distortions in the nematic near the alignment layer which can govern the planar alignment of the bulk LC. The uniform layer of LB film facilitates the molecules of nematic to anchor vertically due to a strong van der Waals interaction between the aliphatic chains leading to a homeotropic alignment.  相似文献   

7.
In this study, we developed a liquid crystal (LC)-based detection method for polymer films synthesized on solid surfaces. A dark to bright transition in the optical appearance of nematic 4-cyano-4′-pentylbiphenyl (5CB) was observed after transferring a poly(methyl methacrylate) (PMMA) film onto a glass substrate functionalized with n-octyltrichlorosilane (OTS). This phenomenon indicates an orientational transition of 5CB from a homeotropic to a planar-random state. The optical response of 5CB was then evaluated directly through polymerization reactions on the OTS-functionalized glass substrate. Polymer films of PMMA, poly(glycidyl methacrylate) (PGMA), and poly(dimethylsiloxane) (PDMS) were synthesized on OTS surfaces covered with their reaction mixtures. All polymer films displayed bright signals of 5CB, which corresponded to the planar-random orientation of LCs. However, no change in orientation was observed for the control experiments. We confirmed the formation of polymer films on the OTS surface using atomic force microscopy. Overall, our results suggest that LCs can be used to construct optical monitoring systems for the product of polymerization reactions.
Figure
?  相似文献   

8.
The behavior of thermotropic nematic liquid crystals (LCs) Merck Phase 4 and ZLI 1115 confined to mesoporous controlled pore glass materials was investigated using 13C nuclear magnetic resonance spectroscopy of probe molecules methyl iodide and methane. The average pore diameters of the materials varied from 81 to 375 A, and the temperature series measurements were performed on solid, nematic, and isotropic phases of bulk LCs. Chemical shift, intensity, and line shape of the resonance signals in the spectra contain lots of information about the effect of confinement on the state of the LCs. The line shape of the 13C resonances of the CH3I molecules in LCs confined into the pores was observed to be even more sensitive to the LC orientation distribution than, for example, that of 2H spectra of deuterated LCs or 129Xe spectra of dissolved xenon gas. The effect of the magnetic field on the orientation of LC molecules inside the pores was examined in four different magnetic fields varying from 4.70 to 11.74 T. The magnetic field was found to have significant effect on the orientation of LC molecules in the largest pores and close to the nematic-isotropic phase transition temperature. The theoretical model of shielding of noble gases dissolved in LCs based on pairwise additivity approximation was utilized in the analysis of CH4 spectra. For the first time, a first-order nematic-isotropic phase transition was detected to take place inside such restrictive hosts. In the larger pores a few degrees below the nematic-isotropic phase transition of bulk LC the 13C quartet of CH3I changes as a powder pattern. Results are compared to those derived from 129Xe NMR measurements of xenon gas in similar environments.  相似文献   

9.
Stimuli‐directed alignment control of liquid crystals (LCs) with desired molecular orientation is currently in the limelight for the development of smart functional materials and devices. Here, photoresponsive azo thiol (AzoSH) was grafted onto gold nanoparticles (GNPs). The resulting hybrid GNPs were able to homogeneously mix with a commercially available nematic LC host, as evidenced by Cryo‐TEM. Interestingly, the LC nanocomposites were found to undergo reversible alignment transition upon light irradiation as a consequence of the transcis photoisomerization of the azo groups on the GNP surface. LC molecules in either planar or bare glass cells were able to change their alignment to vertical upon UV irradiation, while the vertically aligned LC molecules returned to the planar or random orientation under visible irradiation. Neither the azo thiol molecules nor the unfunctionalized GNPs alone promoted the alignment of the LC molecules in the system upon light irradiation. The photoinduced vertical alignment without applied electric or magnetic field was very stable over time and with respect to temperature. Furthermore, an optically switchable device based on the photostimulated reversible alignment control of LCs was demonstrated.  相似文献   

10.
A chemical derivatization technique was used to control the pretilt angle of a liquid crystal. A polyvinyl alcohol (PVA) alignment layer, which gives a very low pretilt angle when in contact with the liquid crystal (LC), was reacted with trifluoroacetic anhydride (TFAA) in the gas phase to change polar -OH groups to -OCOCF3 groups. By introduction of the -OCOCF3 groups in to the PVA, we obtained homeotropic alignment of the E7 LC molecules. The homeotropic alignment of E7 LC molecules in contact with the derivatized PVA alignment layer was confirmed by FTIR and microscopy with crossed polarizers. The change of liquid crystal molecules from homogeneous to homeotropic alignment may be caused by the decrease in surface tension of the PVA alignment layer, due to substitution of the polar -OH groups by -OCOCF3 groups in the gas phase derivatization reaction.  相似文献   

11.
The FT-IR spectra of a thin layer of pure 4-chloro-2'-hydroxy-4'-pentyloxyazobenzene (CHPAB) were studied as a function of temperature. A detailed analysis of the intensity variations was performed by a method based on principal component analysis (PCA). It was shown that the phase transition temperatures obtained by means of PCA and those determined by differential scanning calorimetry (DSC), the most widely used technique in the field, were nearly identical. The PCA results revealed that the transition from solid to a liquid crystalline (LC) phase (smectic A) is more drastic phase transition in terms of infrared absorption changes. The nematic to isotropic phase transition is much less infrared sensitive. Very much smaller absorption changes are associated with the transition between the smectic and nematic mesophases. The pattern of the intensity changes strictly is correlated with the orientation of the CHPAB molecules towards the surface windows due to the surface-induced homeotropic alignment of LC molecules. The important role of hydrogen bonding interaction on the observed transition is disclosed.  相似文献   

12.
In the present work, the dielectric properties of recycled liquid crystals (LCs) (non-purified, purified, and doped with diamond nanoparticles at 0.05, 0.1, and 0.2 wt%) were investigated. The studied LC mixtures were obtained from industrial recycling of end-of-life LC displays presenting mainly nematic phases. Dielectric measurements were carried out at room temperature on a frequency range from 0.1 to 106 Hz using an impedance analyzer. The amplitude of the oscillating voltage was fixed at 1 V using cells with homogeneous and homeotropic alignments. Results show that the dielectric anisotropy of all purified samples presents positive values and decreases after the addition of diamond nanoparticles to the LC mixtures. DC conductivity values were obtained by applying the universal law of dielectric response proposed by Jonscher. In addition, conductivity of the doped LC mixtures is lower than that of the undoped and non-purified LC.  相似文献   

13.
Liquid‐crystal (LC) droplet patterns are formed on a glass slide by evaporating a solution of nematic LC dissolved in heptane. In the presence of an anionic phospholipid, 1,2‐dioleoyl‐sn‐glycero‐3‐phospho‐rac‐(1‐glycerol) (DOPG), the LCs display a dark cross pattern, indicating a homeotropic orientation. When LC patterns are incubated with an aqueous mixture of DOPG and poly‐L ‐lysine (PLL), there is a transition in the LC pattern from a dark cross to a bright fan shape due to the electrostatic interaction between DOPG and PLL. Known to catalyze the hydrolysis of PLL into oligopeptide fragments, trypsin is preincubated with PLL, significantly decreasing the interactions between PLL and DOPG. LCs adopt a perpendicular orientation at the water–LC droplet interface, which gives rise to a dark cross pattern. This optical response of LC droplets is the basis for a quick and sensitive biosensor for trypsin.  相似文献   

14.
The tilt angle of a nematic liquid crystal on a graphite flake was observed to change with increasing numbers of graphite layers. A portion of the substrate that induced homeotropic alignment was covered with graphite flakes, which induced a planar alignment. Nematic liquid crystals placed on the graphite deviated from vertical orientation to the polar angle. The angle of deviation appeared to be proportional to the number of layers and reached a limit, with almost planar alignment, at about 7–8 graphite layers. Although the main contributing factor to the tilt angle change was considered to be the result of van der Waals forces, it was seen that other long-range interaction forces needed to be considered to explain the experimental results obtained.  相似文献   

15.
We propose a novel method for homeotropic alignment of liquid crystals (LCs) utilising in situ self-assembly of a low concentration of 4-(4-heptylphenyl)benzoic acids that form hydrogen bond with the indium tin oxide (ITO) substrates. Stable homeotropic alignment in the LC device is achieved with a simple mixing process of benzoic acid derivative in LC media, and it yields electro-optical performance similar to that achieved with the conventional alignment method using polyimides. It is experimentally confirmed that an ultrathin self-assembled molecular layer of 4-(4-heptylphenyl)benzoic acid formed by hydrogen bonding on ITO substrate makes it possible to attain a reliable homeotropic alignment of LCs. Furthermore, this simple approach provides a cost-effective and stable LC alignment layer with fast response time and thermal stability.  相似文献   

16.
Photosensitive surfaces treated to have in-plane structural anisotropy by illumination with polarized light can be used to orient liquid crystals (LCs). Here we report a detailed study of the dynamic behavior of this process at both short and long times, comparing the ordering induced in the bare active surface with that of the LC in contact with the surface using a high-sensitivity polarimeter that enables detailed characterization of the anisotropy of the active surface. The experiments were carried out using self-assembled monolayers (SAMs) made from dimethylaminoazobenzene covalently bonded to a glass surface through a triethoxysilane terminus. This surface gives planar alignment of the liquid crystal director with an azimuthal orientation that can be controlled by the polarization of actinic light. We find a remarkable long-term collective interaction between the orientationally ordered SAM and the director field of the LC: while an azobenzene based SAM in contact with an isotropic gas or liquid relaxes to an azimuthally isotropic state in the absence of light due to thermal fluctuations, an orientationally written SAM in contact with LC in the absence of light can maintain the LC director twist permanently, that is, the SAM is capable of providing azimuthal anchoring to the LC even in the presence of a torque about the surface normal. We find that the short-time, transient LC reorientation is limited by the weak azimuthal anchoring strength of the SAM and by the LC viscosity.  相似文献   

17.
H. Xu  D. Hartono 《Liquid crystals》2013,40(10):1269-1274
We report a method for detecting Escherichia coli using a nematic liquid crystal (LC), 4-cyano-4′-pentylbiphenyl (5CB). Among three E. coli strains tested, TOP10 strain grown on agar plates induces a homeotropic orientation of LCs whereas DH5α and JM109 strains do not. This results in a clear distinction in the optical appearance of LCs as either uniformly dark or bright under polarised light. The LC-based method provides a simple, rapid and low-cost method of identifying E. coli strains.  相似文献   

18.
A chemical derivatization technique was used to control the pretilt angle of a liquid crystal. A polyvinyl alcohol (PVA) alignment layer, which gives a very low pretilt angle when in contact with the liquid crystal (LC), was reacted with trifluoroacetic anhydride (TFAA) in the gas phase to change polar –OH groups to –OCOCF3 groups. By introduction of the –OCOCF3 groups in to the PVA, we obtained homeotropic alignment of the E7 LC molecules. The homeotropic alignment of E7 LC molecules in contact with the derivatized PVA alignment layer was confirmed by FTIR and microscopy with crossed polarizers. The change of liquid crystal molecules from homogeneous to homeotropic alignment may be caused by the decrease in surface tension of the PVA alignment layer, due to substitution of the polar –OH groups by –OCOCF3 groups in the gas phase derivatization reaction.  相似文献   

19.
Octadecylamine-functionalised single-walled carbon nanotubes (SWCNTs) were dispersed into nematic liquid crystals (LCs) doped with chiral molecules. The collective orientation of nematic LC molecules in helical layers was manipulated by varying dopant concentration. Highly anisotropic nature of SWCNTs enhanced the anisotropy of the LC as confirmed by polarised fluorescence spectroscopy. The π–π interaction of SWCNTs present in the planar alignment layers and twisted nematic LC molecules affects the molecular relaxation process. An irreversible electro-optic memory in the material has been observed.  相似文献   

20.
The role of the linear elastic term in the spatial derivatives of the nematic director on the director field is analysed. We consider a nematic sample in the shape of a slab, confined by two surfaces treated to induce homeotropic alignment. It is shown that this term can be responsible for spontaneous Fréedericksz transitions. The connection between the linear term and the flexoelectric contribution, associated with a surface field, to the bulk energy density, is discussed. The importance of dielectric anisotropy on the spontaneous Fréedericksz transition is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号