首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The complexation of copper(II) with 2′,2′-dimethyl-, 2′,2′-dibutyl-, and 2′,2′-diisobutyl-para-tert-butylbenzohydrazide in water-ethanol media was studied. The reagents (HL) formed [Cu(HL)]2+ and [Cu(HL)2]2+ cationic complexes in a weakly acidic medium and uncharged CuL2 complexes in an alkaline medium. logK st was calculated for these complexes. The effect of 2′,2′-alkyl radicals on the stability of the complexes was considered. The obtained results were compared with data on the complexation of copper(II) ions with 2′,2′-dialkylbenzohydrazides.  相似文献   

2.
The aim of this report is to present the electrospray ionization mass spectrometry results of the non‐covalent interaction of two biologically active ligands, N‐1 ‐ (p‐toluenesulfonyl)cytosine, 1‐TsC, 1 and N‐1 ‐ methanesulfonylcytosine, 1‐MsC, 2 and their Cu(II) complexes Cu(1‐TsC‐N3)2Cl2, 3 and Cu(1‐MsC‐N3)2Cl2 and 4 with biologically important cations: Na+, K+, Ca2+, Mg2+ and Zn2+. The formation of various complex metal ions was observed. The alkali metals Na+ and K+ formed clusters because of electrostatic interactions. Ca2+ and Mg2+ salts produced the tris ligand and mixed ligand complexes. The interaction of Zn2+ with 1–4 produced monometal and dimetal Zn2+ complexes as a result of the affinity of Zn2+ ions toward both O and N atoms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A series of new 3d metal complexes based on dimethyl pyridin-2-ylcarbamoylphosphoramidate (HL) was synthesized. The compounds with general formula M(HL)2Cl2·nH2O and M(L)2·nH2O (M=Co2+, Cu2+, Ni2+) were characterized by means of single-crystal X-ray analysis and IR spectroscopy. The organic ligands in all complexes are coordinated via oxygen atom of the carbonyl group and nitrogen atom of the heterocycle. The coordination environment of the central atoms is a distorted octahedron. The axial positions in the Co(II) and Ni(II) complexes with deprotonated ligands are occupied by water molecules. The Co(II) and Cu(II) complexes with phosphoryl ligands in a neutral form have different ligands in the axial positions: in the Co(II) complex, the positions are occupied by two water molecules, whereas in the Cu(II) complex, the positions are occupied by two chlorine anions. The structure of HL was experimentally and theoretically obtained by utilizing single-crystal X-ray analysis and DFT calculations. The computationally optimized geometric parameters for HL show a good agreement with the experimental results.  相似文献   

4.
Eight new two‐ligand complexes of copper(II) with 1,10‐phenanthroline and one of four different α‐hydroxy‐carboxylic acids (glycolic, lactic, mandelic and benzylic) were prepared. The complexes of general formula [Cu(HL)2(phen)] · nH2O (HL = monodeprotonated acid) ( 1 – 4 ) were characterized by elemental analysis, IR, electronic and EPR spectroscopy, magnetic measurements and thermo‐gravimetric analysis. The complexes of general formulae [Cu(HL)(phen)2](HL) · H2L · nSolv [ 1 a (HL = HGLYO, n = 1, Solv = MeCN) and 3 a (HL = HMANO, n = 0)] and [Cu(L)(phen)(OH2)] · nH2O [ 2 a (L = LACO2–, n = 4) and 4 a (L = BENO2–, n = 2)] were characterized by X‐ray diffractometry. In all these latter a pentacoordinated copper atom has a basically square pyramidal coordination polyhedron, the distortion of which towards a trigonal bipyramidal configuration has been evaluated in terms of the parameter τ. In 1 a and 3 a there are three forms of α‐hydroxycarboxylic acid: a monodentate monoanion, a monoanionic counterion, and a neutral molecule lying in the outer coordination sphere; in 2 a and 4 a the α‐hydroxycarboxylic acid is a bidentate dianion coordinating through carboxyl and hydroxyl oxygens.  相似文献   

5.
This paper studied the electrochemical sensors based on C? C bonding of graphene oxide (GO) on π‐conjugated aromatic group modified gold electrodes for simultaneous detection of heavy metal ions. For comparison, another sensing interface Au‐Ph‐NH‐CO‐GO, in which GO was modified to Au‐Ph‐NH2 interfaces by amide bonding. On the basis of the principle of heavy metal ions complexation with oxygenated species on GO, the fabricated sensing interfaces were used for the simultaneous determination of Pb2+, Cu2+ and Hg2+. The performance of two sensing interfaces for simultaneous detection of three metal ions was compared. Au‐Ph‐GO sensing interface demonstrated higher sensitivity and better repeatability than Au‐Ph‐NH‐CO‐GO sensing interface.  相似文献   

6.
The reactions of Co(II) and Cu(II) acetates, valinates, and acetylacetonates with 3,3′,5,5′-tetramethyl-4,4′-dibutyldipyrrolylmethen (HL) in DMF at 298.15 K are studied by spectrophotometric method. The compositions and thermodynamic constants of formation of the Cu(II) and Co(II) complexes are determined using the methods of molar ratios and continuous changes. With an excess in Cu(II) acetate or acetylacetonate, the formation of mixed-ligand complexes CuL(OAc) and CuL(Acac), respectively, was observed, whereas CuL2 complex was detected in the case of HL excess. At either ratio of the reagent concentrations, reactions of Co(II) acetate and acetylacetonate with HL always afforded CoL2 complex, while in the case of Cu(II) and Co(II) valinates, only one amino acid ligand was replaced to give ML(Val) complexes (HVal is valine). The chelating capability of the ligand HL toward the Cu2+ ion was found to be higher than that toward the Co2+ ion.  相似文献   

7.
The preparation and characterization of some dipositive metalion complexes de rived from potassium 3‐(pyridine‐4‐carbonylmethyl)‐dithiocarbazate (PCDHK) are reported. The solid complexes of the composition ML·nH2O (M=Cu(II), Co(II), Mn(II), Zn(II), Cd(II), Ni(II), Pb(II), L = PCD?2, n = 0, 1, PCD?2=PCDHK‐K+‐H+) and ML2·2H2O (M=UO2(IV), L=PCDH?1, PCDH?1=PCDHK‐K+) have been characterized by elemental analyses, IR, UV, and 1HNMR spectra. The IR spectral data indicate that PCDHK be haves as either a mononegative or binegative ligand and coordinates in a tridentate or bridging tetradentate manner.  相似文献   

8.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line.  相似文献   

9.
New anthracene based Schiff base ligands L 1 and H( L 2 ), their Cu(II) complexes [Cu( L 1 )Cl2] ( 1 ) and [Cu( L 2 )Cl] ( 2 ) , (where L 1  = N1,N2bis(anthracene‐9‐methylene)benzene‐1,2‐diamine, L 2  = (2Z,4E)‐4‐(2‐(anthracen‐9‐ylmethyleneamino)phenylimino)pent‐2‐en‐2‐ol) have been prepared and characterized by elemental analysis, NMR, FAB‐mass, EPR, FT‐IR, UV–Vis and cyclic voltammetry. The electronic structures and geometrical parameters of complexes 1 and 2 were analyzed by the theoretical B3LYP/DFT method. The interaction of these complexes 1 and 2 with CT‐DNA has been explored by using absorption, cyclic voltammetric and CD spectral studies. From the electronic absorption spectral studies, it was found that the DNA binding constants of complexes 1 and 2 are 8.7 × 103 and 7.0 × 104 M?1, respectively. From electrochemical studies, the ratio of DNA binding constants K+/K2+ for 2 has been estimated to be >1. The high binding constant values, K+/K2+ ratios more than unity and positive shift of voltammetric E1/2 value on titration with DNA for complex 2 suggest that they bind more avidly with DNA than complex 1 . The inability to affect the conformational changes of DNA in the CD spectrum is the definite evidences of electrostatic binding by the complex 1 . It can be assumed that it is the bulky anthracene unit which sterically inhibits these complexes 1 and 2 from intercalation and thereby remains in the groove or electrostatic. The complex 2 hardly cleaves supercoiled pUC18 plasmid DNA in the presence of hydrogen peroxide. The results suggest that complex 2 bind to DNA through minor groove binding.  相似文献   

10.
The [M(HL)2(H2O)2]X2 complexes were synthesized (M = Mn(II), Co(II), Ni(II), Cu(II), Zn; X = CH3COO, Cl, BF4 ) that incorporate bidentately coordinated molecules of N,N-dimethylhydrazide of 4-nitrobenzoic acid (HL). The latter molecules chelate the metal atom through the carbonyl O atom and the N atom of dimethylamino group. The square-planar complexes of Cu and Ni with deprotonated form of a ligand with composition ML2 were also isolated. The synthesized complexes were studied by IR, electronic and EPR spectroscopies, and by cyclic voltammetry.  相似文献   

11.
Two two‐dimensional supramolecular Nickel(II) and Cobalt(III) complexes, [Ni( L 2 )2]·2CH3OH ( 1 ) and [2Co( L 2 )2] ( 2 ) ( HL 2  = 1‐(2‐{[(E)‐3‐bromo‐5‐chloro‐2‐hydroxybenzylidene]amino}phenyl)ethanone oxime), were synthesized via complexation of salts acetate with HL 1 (2‐(3‐bromo‐5‐chloro‐2‐hydroxyphenyl)‐4‐methyl‐1,2‐dihydroquinazoline 3‐oxide, H is the deprotonatable hydrogen). During the reaction, the C–N bond in HL 1 is converted into the C=N–OH group in HL 2 . The spectroscopic data of both complexes were compared with the ligand HL 1 . HL 1 and both complexes were determined by single‐crystal X‐ray crystallography. The differently geometric features of the obtained complexes 1 and 2 are observed. In the crystal structure, 1 and 2 form an infinite 1‐D chain‐like and 2‐D supramolecular frameworks. EPR spectroscopy of 2 was investigated. Moreover, electrochemical properties and antimicrobial activities of both complexes were also studied. In addition, the calculated HOMO and LUMO energies show the character of HL 1 , complexes 1 and 2 . The electronic transitions and spectral features of HL 1 and both complexes were discussed by TD‐DFT calculations.  相似文献   

12.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

13.
Physicochemical studies were performed to study new ferrocene based Schiff base ligand (HL), (Z)‐(4‐(1‐((2‐carboxycyclohexa‐2,4‐dien‐1‐yl)imino)ethyl)[bis(η 5 cyclopenta‐1,3‐dien‐1 yl)]iron with some transition metal ions to form a series of ferrocenyl derivatives bearing transition metal complexes of the type [M(L)Cl(H2O)3] (M = Ni(II), Cu(II)), [M(L)Cl(H2O)3]nH2O (M = Mn(II) (n = 1), Co(II) (n = 1), Zn(II) (n = 2) and Cd(II) (n = 3)) and [M(L)Cl(H2O)3]Cl.nH2O (M = Cr(III) (n = 2) and Fe(III) (n = 1)). The new ligand and metal ion complexes have been prepared and characterized by IR, UV‐Vis, 1H‐NMR, TG/DTA, elemental analysis and mass spectrometry. The TGA/DTG analysis revealed that the ferrocene precursors decompose spontaneously to form iron(II) oxide. The molecular and electronic structure of the ligand (HL) was optimized theoretically and the quantum chemical parameters were calculated. The molecular structure with a variety of functionalities can be used to investigate the coordination sites and the total charge density around each atom. DFT‐based molecular orbital energy calculations of the new ligand have been also studied. All of the complexes were screened against a panel of Gram (+) bacteria: Streptococcus pneumoniae and Bacillis subtilis , Gram (−) bacteria: Pseudomonas aeruginosa and Escherichia coli and panel of fungi: Aspergillus fumigatu , Syncephalastrum racemosum , Geotricum candidum and Candida albicans . Anticancer activity screening for the tested compounds using 4 different concentrations of HL ligand against human tumor cells of breast cancer cell line MCF‐7 were obtained. Molecular docking was used to predict the binding between HL ligand and human‐DNA‐Topo I complex (PDB ID: 1SC7), the receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), crystal structure of Escherichia coli (PDB ID: 3T88), to identify the binding mode and the crucial functional groups interacting with the three proteins.  相似文献   

14.
An organometallic NO‐bidentate Schiff base, (2‐(1‐((1‐carboxyethyl)imino)ethyl) cyclopenta‐2,4‐dien‐1‐yl)(cyclopenta‐2,4‐dien‐1‐yl) iron (HL) was synthesized by condensation of 2‐acetylferrocene with amino acid alanine. Then its octahedral Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) complexes were synthesized. All compounds were characterized on the basis of elemental analysis (C, H, N and M), molar conductivity, FT‐IR, UV–Vis, 1H‐NMR, SEM, mass analysis and thermal studies. Furthermore, computational studies of HL ligand have been carried out by DFT/B3LYP method. HOMO and LUMO energy values, chemical hardness‐softness, electronegativity, electrophilic index and other parameters were calculated. SEM micrographs of HL ligand and its [Cd (HL)(H2O)2Cl2].2H2O complex, showed that they were prepared in nano‐structure forms with particle size 54 and 41 nm, respectively. Antifungal and antibacterial activities of HL ligand and its metal complexes have been screened in vitro against different species such as Aspergillus fumigatus, Candida albicans, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. The synthesized compounds were evaluated for their anticancer activities against breast cancer cell line (MCF‐7) and normal melanocytes cell line (HFB‐4). It was found that [Co (HL)(H2O)2Cl2].3H2O complex had the lowest IC50 value (10.9 μg/ml) and hence was the most active one. Finally, the optimized structures of the Schiff base and its Co (II) complex have been used to accomplish molecular docking studies with receptors of 3HB5, 3MIW, 5IBV and 4WM8 to determine the most preferred mode of interaction.  相似文献   

15.
A novel azo dye ligand, namely 1‐[(5‐mercapto‐1H‐1,2,4‐triazole‐3‐yl)diazenyl]naphthalen‐2‐ol (HL), was synthesized. Mn2+, Co2+, Ni2+, Cu2+ and UO22+ complexes were also prepared by the treatment of HL with Mn(CH3COO)2?4H2O, Co(CH3COO)2?4H2O, Ni(CH3COO)2?4H2O, Cu(CH3COO)2?H2O, CuCl2?2H2O, Cu(NO3)2?6H2O and UO2(NO3)2?6H2O. The structures of these metal chelates were confirmed using elemental, spectral, magnetic moment, molar conductance and thermal analyses. The analytical data confirmed the formation of the chelates in 1:1 (metal‐to‐ligand) ratio having the formula [ML(H2O)X]Y?H2O, where M is Mn2+, Co2+, Ni2+, Cu2+ or UO22+; X is Cl?, NO3? or CH3COO?; and Y is H2O. The azo compound acts in a monobasic bidentate manner via the nitrogen and oxygen atoms of azo and hydroxyl groups, respectively. All complexes were found to have tetrahedral structures, except the UO22+ complex that showed octahedral geometry. The mode of interaction between the synthesized complexes and calf thymus DNA was explored by the aid of absorption spectroscopy and viscosity measurements. The azo dye and its chelates were evaluated against the growth of various bacterial and fungal strains (Escherichia coli, Staphylococcus aureus, Aspergillus flavus and Candida albicans) with insight gained into the effect of type of metal centre, type of coordinated anion and position of the metal in the periodic table on the activity of the complexes. The geometric structure of the complexes was optimized using molecular modelling. The in vitro cytotoxicity of the synthesized compounds was tested against HEPG2 cell line.  相似文献   

16.
Complexes with Macrocyclic Ligands. IV. Heterodinuclear Cobalt(II), Nickel(II), Copper(II), Zinc(II) and Palladium(II) Complexes with a Macrocyclic Ligand of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of nickel(II), copper(II), and palladium(II) complexes, [MLPh] ( 3 ; LPh = N,N′‐phenylene‐bis(3‐formyl‐5‐tert.‐butyl‐salicylaldimine)), are described. These neutral mononuclear complexes react with metal(II) perchlorate and 1,3‐propylenediamine to form heterodinuclear, macrocyclic, cationic complexes of the type [MM′(LPh,3)]2+ ( 4 ; M = Ni, Cu, Pd; M′ = Co, Cu, Zn). The structures of the five new compounds [NiCo(LPh,3)](ClO4)2, [NiCu(LPh,3)](ClO4)2, [CuCu(LPh,3)](ClO4)2, [CuZn(LPh,3)](ClO4)2, and [PdCu(LPh,3)](ClO4)2 were determined by X‐ray diffraction.  相似文献   

17.
The quinazoline‐type ligand 2‐(4‐diethylamino‐2‐hydroxyphenyl)‐4‐methyl‐1,2‐dihydroquinazoline 3‐oxide ( HL 1 ; H is the deprotonatable hydrogen) was prepared. Two 2‐D supramolecular complexes [Cu2( L 2 )2(NO3)2] ( 1 ) and [Ni2( L 2 )2(CH3COO)2] ( 2 ) ( L 2 = 1‐(2‐{[(E)‐(4‐diethylamino‐2‐hydroxybenzylidene]amino} phenyl)ethanone oxime) were synthesized using HL 1 and characterized by elemental analysis, spectroscopic methods, and single‐crystal X‐ray diffraction studies. It revealed that 1 had coordinated two nitrate ions whereas 2 had acetate ions. In the crystal structures, six‐coordinated Cu (II) complex 1 formed an infinite 2‐D and X‐shaped 3‐D supramolecular frameworks. Simultaneously, Ni (II) complex 2 assembled into wavy 2‐D networks. Furthermore, electrochemical properties and antimicrobial activities of all compounds were as well investigated. Afterwards, the electrophilic and nucleophilic attack sites identified by electrostatic potential (ESP) calculations confirmed that hydrogen bonds were observed in the optimized structure of the crystal, and the closest contact between the active atoms of both complexes was confirmed through Hirshfeld surface analysis and time‐dependent density functional theory (TD‐DFT) calculations.  相似文献   

18.
Inspired by the high transition‐metal‐ion content in mussel glues, and the cross‐linking and mechanical reinforcement effects of some transition‐metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni2+–dopamine system to investigate the polymerization mechanism. The results show that the Ni2+ ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni2+ ions are chelated with polydopamine (PDA) units, forming homogeneous Ni2+–PDA complexes. This facile one‐pot approach is utilized to construct transition‐metal‐ion–PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well‐dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA‐derived thin graphitic carbon layers. The nickel–graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p ‐ nitrophenol.  相似文献   

19.
The synthesis of hydrophilic lanthanide‐doped nanocrystals (Ln3+‐NCs) with molecular recognition ability for bioimaging currently remains a challenge. Herein, we present an effective strategy to circumvent this bottleneck by encapsulating Ln3+‐NCs in graphene oxide (NCs@GO). Monodisperse NCs@GO was prepared by optimizing GO size and core–shell structure of NaYF4:Yb,Er@NaYF4, thus combining the intense visible/near‐infrared II (NIR‐II) luminescence of NCs and the unique surface properties and biomedical functions of GO. Such nanostructures not only feature broad solvent dispersibility, efficient cell uptake, and excellent biocompatibility but also enable further modifications with various agents such as DNA, proteins, or nanoparticles without tedious procedures. Moreover, we demonstrate in proof‐of‐concept experiments that NCs@GO can realize simultaneous intracellular tracking and microRNA‐21 visualization, as well as highly sensitive in vivo tumor‐targeted NIR‐II imaging at 1525 nm.  相似文献   

20.
Development of high‐strength hydrogels has recently attracted ever‐increasing attention. In this work, a new design strategy has been proposed to prepare graphene oxide (GO)/polyacrylamide (PAM)/aluminum ion (Al3+)‐cross‐linked carboxymethyl hemicellulose (Al‐CMH) nanocomposite hydrogels with very tough and elastic properties. GO/PAM/Al‐CMH hydrogels were synthesized by introducing graphene oxide (GO) into PAM/CMH hydrogel, followed by ionic cross‐linking of Al3+. The nanocomposite hydrogels were characterized by means of FTIR, X‐ray diffraction (XRD), and scanning electron microscopy/energy‐dispersive X‐ray analysis (SEM‐EDX) along with their swelling and mechanical properties. The maximum compressive strength and the Young's modulus of GO3.5/PAM/Al‐CMH0.45 hydrogel achieved values of up to 1.12 and 13.27 MPa, increased by approximately 6488 and 18330 % relative to the PAM hydrogel (0.017 and 0.072 MPa). The as‐prepared GO/PAM/Al‐CMH nanocomposite hydrogels possess high strength and great elasticity giving them potential in bioengineering and drug‐delivery system applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号