首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Well‐defined and air‐stable PEPPSI (Pyridine Enhanced Precatalyst Preparation Stabilization and Initiation) themed palladium bis‐N‐heterocyclic carbene complexes have been developed for the domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with a variety of terminal alkynes and C‐H bond arylation of benzothiazole with aryl iodides. The PEPPSI themed palladium complexes, 2a and 2b were synthesized in good yields from the reaction of corresponding imidazolium salts with PdCl2 and K2CO3 in pyridine. The new air‐stable palladium‐NHC complexes were characterized by NMR spectroscopy, X‐ray crystallography, elemental analysis, and mass spectroscopy studies. The PEPPSI themed palladium(II) bis‐N‐heterocyclic carbene complexes 2a and 2b exhibited excellent catalytic activities for domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with terminal alkynes yielding benzofuran derivatives. In addition, the palladium complexes, 2a and 2b successfully catalyzed the direct C‐H bond arylation of benzothiazole with aryl iodides as coupling partners in presence of CuI as co‐catalyst.  相似文献   

2.
Four dinuclear N ‐heterocyclic carbene (NHC) palladium complexes were prepared by reaction of imidazolinium salts, PdCl2 and bridging ligands (piperazine and DABCO) in one pot or by direct cleavage of the chloro‐bridged dimeric compounds [Pd(μ ‐Cl)(Cl)(NHC)]2 with bridging ligands. All of the complexes were fully characterized using 1H NMR, 13C NMR, high‐resolution mass and infrared spectroscopies, elemental analysis and single‐crystal X‐ray diffraction. The catalytic activities of the obtained palladium catalysts towards Hiyama coupling of aryl chlorides with phenyltrimethoxysilane were investigated and the results showed that the dinuclear palladium complexes were considerably active for the coupling reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Four ruthenium‐N‐heterocyclic carbene complexes ( 3–6 ) have been prepared and the new compounds characterized by C, H, N analyses, 1H‐NMR and 13C‐NMR. The reduction of ketones to alcohols via transfer hydrogenation was achieved with catalytic amounts of complexes 3–6 in the presence of t‐BuOK. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A series of monomeric palladacycle complexes bearing n‐butyl‐substituted N‐heterocyclic carbenes, namely [Pd(NHC)X(dmba)] (dmba: dimethylbenzylamine and [Pd(NHC)X(ppy)]; NHC: 1‐n‐butyl‐3‐substituted benzylimidazol‐2‐ylidene; ppy: 2‐phenylpyridine), were prepared either by transmetallation from the corresponding silver carbene complexes or by the reaction of the corresponding acetate‐bridged palladacycle dimer with N‐heterocyclic carbene ligands in high yields. The palladium(II) complexes were characterized using elemental analyses, APCI‐MS, 1H NMR and 13C NMR spectroscopies. These complexes are efficient in the Suzuki–Miyaura coupling reaction between phenylboronic acid and aryl bromides.  相似文献   

5.
The use of 1,3‐bis(N‐heterocyclic)carbene ligands with different alkyl wingtip groups (alkyl = methyl, isopropyl and tert ‐butyl) is an effective method for the palladium‐catalysed direct S ‐arylation of methylphenyl sulfoxide and C–C coupling of various of aryl halides with alkenes. The reactions proceed in moderate to good yields. Interestingly, it is shown experimentally that, by using bulkier bidentate N‐heterocyclic carbene ligands, more selective catalytic systems towards cis products in Heck coupling reactions can be achieved.  相似文献   

6.
We synthesized three coumarin‐substituted benzimidazolium chlorides and their silver(I), ruthenium(II) and palladium(II) N‐heterocyclic carbene (NHC) complexes. All compounds were characterized using appropriate spectroscopic techniques and elemental analyses. Single‐crystal X‐ray structure of a Pd(II)–NHC complex ( 6b ) was also determined. The inhibitory properties of all compounds were tested on the activity of human paraoxonase 1 (PON1). All complexes exhibited weaker inhibitory properties than their corresponding benzimidazolium salts except for complex 6b which is the most active inhibitor with an IC50 value of 3.01 μM among the compounds reported in this study. A kinetic evaluation showed that this complex inhibits PON1 activity in a non‐competitive manner. Molecular docking studies were also performed for 6b in order to obtain more insight into the binding mode.  相似文献   

7.
N‐Aryl amination and the Buchwald–Hartwig reaction are of great synthetic and industrial interest and scientists accept their usefulness and versatility for obtaining arylamines. In this study Ag–N‐heterocyclic carbene complexes were used as transmetallation reagents for the synthesis of Pd–N‐heterocyclic carbene complexes. The new Pd–N‐heterocyclic carbene complexes were characterized using elemental analysis and 1H NMR, 13C NMR and infrared spectroscopies. The crystal structure of one, namely dichlorobis[1,3‐bis(2‐methylbenzyl)imidazolidin‐2‐yliden]palladium(II), is presented. The activity of the Pd(II) complexes in the coupling reaction of anilines or amines with bromobenzene was investigated. These complexes exhibited high catalytic activities in the direct synthesis of triarylamines and secondary amines in a single step. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Two new [C^N]‐type palladacyclic dinuclear complexes bearing carboxylate‐containing N‐heterocyclic carbenes (NHCs) were synthesized, and in both cases the carboxylato‐NHC ligand adopts a bridging mode. Both complexes proved to be suitable precursors, which can be used to divergently access palladacycles bearing ester‐ or COOH‐functionalized NHCs upon esterification or acidolysis. In the esterification reactions, alkyl halides are found to selectively react with the carboxylato moieties, and the palladacycle scaffold is retained even when excess haloalkane is employed. In the acidolysis reactions, the desired COOH‐tethered complexes can only be obtained when stoichiometric acid (with respect to Pd) is used, while excess acid destroys the metallacycle scaffold. Finally, a preliminary catalytic study reveals the good performances of all newly synthesized complexes in direct aromatic C─H functionalization reactions with alkynes. Poisoning experiments indicate that these hydroarylation reactions are likely to be homogeneously catalyzed.  相似文献   

9.
The synthesis, characterisation and biological activity of water‐soluble Ag(I)‐NHC complexes, general formula Na[(NHC)AgCl] where NHC is a sulfonated and sterically hindered N‐heterocyclic carbene, is reported. The Ag‐NHC complexes (2a–e) were synthesised by reacting the corresponding sulfonated NHC ligands with Ag2O in the presence of NaCl or NaBr in methanol/water (1:1) solution. Synthesised silver (I)‐N‐heterocyclic carbene complexes have been characterised by NMR, micro‐analysis and HRMS spectroscopic methods. The IC50 values of these complexes were determined by a proliferation BrdU enzyme‐linked immunosorbent assay (ELISA) against HeLa (human cervix carcinoma), HT29 (human adenocarcinoma) and L929 (mouse fibroblast) cell lines. These complexes have been highlighted as promising and original platforms for building new types of metalodrug. All new water‐soluble Ag(I) complexes demonstrated remarkable cytotoxic activity against HeLa, HT29 and L929 cell lines.  相似文献   

10.
A new series of sterically hindered ligands containing (1R,2S,4R)‐(+)‐menthoxymethyl group attached to benzimidazole‐based N‐heterocyclic carbene (NHC), palladium–bis‐NHC complexes and (κ2C,N)‐palladacyclic NHC complexes have been synthesized and characterized using appropriate spectroscopic techniques. Catalytic performance of the palladium complexes has been investigated for allylic alkylation, Suzuki and Heck carbon–carbon coupling reactions. These complexes smoothly catalyse the carbon–carbon bond formation reactions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
palladium complexes of ferrocenyl‐functionalized N‐heterocyclic carbenes with different substituents were synthesized. The molecular structures of selected complexes were determined by X‐ray diffraction and show a pseudo‐square‐planar structure with a central palladium atom surrounded by carbene, pyridine, and two chloride ligands. The influence of the different substituents on the structure and reactivity of the complexes was studied. The catalytic properties of the complexes were investigated in the Larock indolization reactions of 2‐bromoanilines with diphenylacetylene. Their performances slightly varied in this reaction, but the complex with mesityl substituent showed the best activity.  相似文献   

12.
A complete protocol for the synthesis of new palladacyclopentadienyl complexes with purine‐based carbenes as supporting ligands is described. The new organometallic compounds were exhaustively characterized using NMR and infrared spectroscopies and elemental analysis. The single‐crystal X‐ray structure of complex 2b coordinating also a triphenylphosphine was resolved. Some of these complexes showed an antiproliferative activity comparable to or better than that of cisplatin on two human ovarian cancer lines: A2780 (cisplatin‐sensitive) and A2780cis (cisplatin‐resistant). Moreover, for complexes 2 and 3 (coordinating one purine‐based N‐heterocyclic carbene ligand and one phosphine) the cytotoxicity is associated with an evident induction of apoptosis. Finally, complexes 3 , bearing one purine‐based N‐heterocyclic carbene ligand and one 1,3,5‐triaza‐7‐phosphaadamantane, proved practically inactive on non‐tumour fibroblast cells (MRC‐5).  相似文献   

13.
Herein, we report the synthesis of palladium complexes bearing an N‐heterocyclic carbene (NHC)‐sulfonamide bidentate ligand and their application in ethylene oligomerization and ethylene/polar monomer cooligomerization. These catalysts could smoothly catalyze ethylene oligomerization and ethylene/methyl acrylate cooligomerization albeit the performance was lower compared to that of a NHC–phenoxide catalyst. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 474–477  相似文献   

14.
Platinum (II) complexes bearing N‐heterocyclic carbene (NHC) ligands have been widely used in catalytic chemistry, but there are very few reports of biological properties of this type of complexes. A series of [PtCl2(NHC)(PEt3)] complexes were synthesized. The structures of all compounds were characterized by 1H‐NMR, 13C‐NMR, IR and elemental analysis techniques, which supported the proposed structures. The single crystal structures of complexes 1a and 1e were determined. The title complexes show slightly distorted square‐planar coordination around the platinum (II) metal center. The cytotoxic properties of the platinum (II)–NHC complexes have been assessed in various human cancer lines, including cisplatin‐sensitive and resistant cells. IC50 values of these four complexes were determined by the MTS‐based assay on three human cell lines—brain (SHSY5Y), colon (HTC116) and liver (HEP3B). These complexes have been highlighted cancer therapeutic agent with unique structures and functions.  相似文献   

15.
The synthesis and coordination chemistry of a saturated analogue of a “bulky‐yet‐flexible” N‐heterocyclic carbene (NHC) ligand are described. “SIPaul” is a 4,5‐dihydroimidazol‐2‐ylidene ligand with unsymmetrical aryl N‐substituents, and is one of the growing class of “bulky‐yet‐flexible” NHCs that are sufficiently bulky to stabilize catalytic intermediates, but sufficiently flexible that they do not inhibit productive chemistry at the central metal atom. Here, the synthesis of SIPaul.HCl and its complexes with copper, silver, iridium, palladium, and nickel, and its selenourea, are reported. The steric impact of the ligand is quantified using percent buried volume (% Vbur), whereas the electronic properties are probed and quantified using the Tolman Electronic Parameter (TEP) and δSe of the corresponding selenourea. This work shows that despite the often very different performance of saturated versus unsaturated carbenes in catalysis, the effect of backbone saturation on measurable properties is very small.  相似文献   

16.
A series of bidentate pyridine‐functionalized palladium N‐heterocyclic carbene (Pd NHC) complexes with various wingtip substituents (R = methyl, phenyl and tert‐butyl) have been synthesized and evaluated for their potential biomedical applications as antimicrobials and antiproliferative drug candidates. The obtained Pd NHC complexes were applied in a standard broth microdilution assay for determination of their antimicrobial activities against thirteen strains of pathogenic microorganisms. In addition to that, cytotoxic activities of the Pd NHC complexes were also evaluated against three human cancer cell lines, namely breast (MCF‐7), colon (HCT116) and oral (H103) cancer cells, using a standard MTT assay. Upon coordination to palladium, the Pd NHC complexes show significant antimicrobial activities with minimum inhibitory concentrations in the micromolar range, and they are cytotoxic to the tested carcinomas with IC50 ranging from 13 to 38 μM. Evidences for influence of both wingtip substituents and optical isomerism on the biological activities of the complexes have been found.  相似文献   

17.
Herein, we report that a series of novel palladium(II)‐NHC complexes (NHC=N‐heterocyclic carbene) were synthesized. The structures of all novel complexes were characterized by 1H NMR, 13C NMR, FT‐IR spectroscopy and elemental analysis techniques. These palladium(II)‐NHC complexes were tested as efficient catalysts in the direct C—H bond activation of benzoxazole and benzothiazole with aryl bromides in the presence of 1 mol% catalyst loading at 150 °C for 4 h. Under the given conditions, various aryl bromides were successfully applied as the arylating reagents to achieve the 2‐arylbenzoxazoles and 2‐arylbenzothiazoles in acceptable to high yields.  相似文献   

18.
A new and efficient nanoparticle–N‐heterocyclic carbene–palladium complex was synthesized and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, energy‐dispersive X‐ray analysis, X‐ray diffraction, transmission electron microscopy, elemental analysis, inductively coupled plasma analysis and vibrating sample magnetometry. This catalytic system was found to be a highly active catalyst in the Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions. These reactions were best performed in dimethylformamide and water, respectively, in the presence of only 0.054 mol% of palladium under mild conditions. Moreover, the catalyst could be recovered easily and reused at least ten times without any considerable loss of its catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Two Pd(II)–NHC complexes bearing benzimidazole and pyridine groups have been successfully prepared and fully characterized by NMR and X‐ray diffraction analysis. The structure of palladium complexes are a typical square‐planar with palladium surrounded by two pairs of trans‐arranged benzimidazole and carbene ligands. The Pd–NHC complexes have been proved to be a highly efficient catalyst for the Mizoroki–Heck coupling reaction of aryl halides with various substituted acrylates under mild conditions in excellent yields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Eight novel palladium N‐heterocyclic carbene (Pd‐NHC) complexes were synthesized by the reaction of chloro 1,3‐dialkylbenzimidazolin‐2‐ylidene silver(I) complexes with bis(benzonitrile)palladium(II) chloride in dichloromethane. These eight Pd‐NHC complexes are as follows: bis[1‐phenyl‐3‐(2,4,6‐trimethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(2,3,5,6‐tetramethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(2,3,4,5,6‐pentamethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(3,4,5‐trimethoxybenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐diethylaminoethyl)‐3‐(3‐methylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐diethylaminoethyl)‐3‐(2,3,5,6‐tetramethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐morpholinoethyl)‐3‐naphthalenomethylbenzimidazol‐2‐ylidene]dichloropalladium(II) and bis[1‐(2‐morpholinoethyl)‐3‐(2‐methylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II). Also, these synthesized complexes were fully characterized using Fourier transform infrared, 1H NMR and 13C NMR spectroscopic methods and elemental analysis techniques. These synthesized novel Pd‐NHC complexes were tested as catalysts in the direct arylation of 2‐n‐butylthiophene, 2‐n‐butylfuran and 2‐isopropylthiazole with various aryl bromides at 130°C for 1 h. The complexes showed very good catalytic activities in these reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号