首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic CuFe2O4/g‐C3N4 hybrids were synthesized through a facile method and their catalytic performances were evaluated in click chemistry for the first time. The structural and morphological characterization of prepared materials was carried out by different techniques such as X‐ray diffraction, high‐resolution transmission electron microscopy, field emission scanning electron microscopy, Fourier infrared spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, and N2 adsorption–desorption analysis (Brunauer–Emmett–Teller surface area). The utilization of magnetic CuFe2O4/g‐C3N4 enabled superior performance in the one‐pot azide–alkyne cycloaddition reaction in water using alkyl halides and epoxides as azide precursors without the need of any additional agents. The present system is broad in scope and especially practical for the synthesis of macrocyclic triazoles and also tetrazoles. In addition, the catalytic system highly fulfills the demands of “green click chemistry” with its convenient conditions, especially easy access to a variety of significant products in low catalyst loading and simple work‐up and isolation procedure.  相似文献   

2.
Bacitracin‐conjugated superparamagnetic iron oxide (Fe3O4) nanoparticles were prepared by click chemistry and their antibacterial activity was investigated. After functionalization with hydrophilic and biocompatible poly(acrylic acid), water‐soluble Fe3O4 nanoparticles were obtained. Propargylated Fe3O4 nanoparticles were then synthesized by carbodiimide reaction of propargylamine with the carboxyl groups on the surface of the iron oxide nanoparticles. By further reaction with N3‐bacitracin in a CuI‐catalyzed azide–alkyne cycloaddition, the magnetic Fe3O4 nanoparticles were modified with the peptide bacitracin. The functionalized magnetic nanoparticles were characterized by powder X‐ray diffraction, X‐ray photoelectron spectroscopy, TEM, zeta‐potential analysis, FTIR spectroscopy and vibrating‐sample magnetometry. Cell cytotoxicity tests indicate that bacitracin‐conjugated Fe3O4 nanoparticles show very low cytotoxicity to human fibroblast cells, even at relatively high concentrations. In view of the antibacterial activity of bacitracin, the biofunctionalized Fe3O4 nanoparticles exhibit an antibacterial effect against both Gram‐positive and Gram‐negative organisms, which is even higher than that of bacitracin itself. The enhanced antibacterial activity of the magnetic nanocomposites allows the dosage and the side effects of the antibiotic to be reduced. Due to the antibacterial effect and magnetism, the bacitracin‐functionalized magnetic nanoparticles have potential application in magnetic‐targeting biomedical applications.  相似文献   

3.
New functionalized magnetic core–shell nanoparticles, CuFe2O4@SiO2‐OP2O5H, were prepared by grafting of phosphorus pentoxide on CuFe2O4@SiO2 nanoparticles and characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, inductively coupled plasma optical emission spectrometry and vibrating sample magnetometry. The catalytic activity of CuFe2O4@SiO2‐OP2O5H as a novel catalyst was evaluated in the synthesis of 1,8‐dioxo‐octahydroxanthenes under solvent‐free conditions. The results showed that the catalyst has high activity and the desired products are obtained in high yields within short reaction times. The catalyst is readily recovered using magnetic decantation and can be used at least four times without noticeable deterioration in catalytic activity.  相似文献   

4.
A robust synthesis of magnetic NiFe2O4 nanoparticles via a hydrothermal technique was investigated. The prepared magnetic NiFe2O4 nanoparticles were characterized using powder X‐ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), high‐resolution TEM, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, infrared spectroscopy and vibrating sample magnetometry. XRD and TEM analyses confirmed the formation of single‐phase ultrafine nickel ferrite nanoparticles with highly homogeneous cubic shape and elemental composition. Moreover, the prepared magnetic NiFe2O4 nanoparticles were used as an efficient, cheap and eco‐friendly catalyst for the Claisen–Schmidt condensation reaction between acetylferrocene and various aldehydes (aromatic and/or heterocyclic) yielding acetylferrocene chalcones in excellent yields, with easy work‐up and reduced reaction time. The products were purified via crystallization. The structures of the produced compounds were elucidated using various spectroscopic analyses (1H NMR, 13C NMR, GC–MS). The catalyst is readily recovered by simple magnetic decantation and can be recycled several times with no discernible loss of catalytic activity. Furthermore, the prepared chalcone derivatives were evaluated for their anti‐tumour activity against three human tumour cell lines, namely HCT116 (colon cancer), MCF7 (breast cancer) and HEPG2 (liver cancer), and showed a good activity against colon cancer. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

6.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

7.
Nanocellulose (NC) materials have some unique properties, which make them attractive as organic or inorganic supports for catalytic applications. Nanocatalysts with diameters of less than 100 nm are difficult to separate from the reaction mixture, therefore, magnetic nanoparticles (MNPs) were used as catalysts to overcome this problem. Fe3O4@NCs/BF0.2 as a green, bio‐based, eco‐friendly, and recyclable catalyst was synthesized and characterized using fourier‐transform infrared spectroscopy (FT‐IR), vibrating sample magnetometer (VSM), X‐ray diffraction (XRD), X‐ray fluorescence (XRF), Brunauer–Emmett–Teller (BET), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA) techniques. Fe3O4@NCs/BF0.2 was employed for the synthesis of 2,3‐dihydro‐1H‐perimidine derivatives via a reaction of 1,8‐diaminonaphthalene with various aldehydes at room temperature under solvent‐free conditions. The present procedure offers several advantages including a short reaction time, excellent yields, easy separation of catalyst, and environmental friendliness.  相似文献   

8.
《中国化学会会志》2018,65(7):850-855
A green synthesis of benzimidazole derivatives using recyclable magnetic 4,5‐imidazoledicarboxylic is described. The magnetic 4,5‐imidazoledicarboxylic (Fe3O4@ImDCA) nanocatalyst was characterized completely by infrared spectroscopy (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), scanning electron microscopy (SEM), and powder X‐ray diffraction (XRD), and benzimidazoles were characterized by their melting points, FT‐IR, and 1H NMR. The current approach provides a number of advantages in terms of high yields, low reaction times, the use of green media, and easy work‐up.  相似文献   

9.
High efficiency and selectivity, easy magnetic recovery and recycling, and use of air as the oxidant at atmospheric pressure are major objectives for oxidation catalysis in terms of sustainable and green processes. A tris(triazolyl) ligand, so far only used in copper‐catalyzed alkyne azide cycloadditions, was found to be extremely efficient in SiO2/γ‐Fe2O3‐immobilized palladium complexes. It was characterized by inductively coupled plasma (ICP) analysis, transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy‐dispersive X‐ray spectroscopy (EDX), and X‐ray photoelectron spectra (XPS) and found to fulfill the combined conditions for the selective oxidation of alcohols to aldehydes and ketones.  相似文献   

10.
In the present study, Fe3O4 nanoparticles were prepared via simple and versatile procedure. Then, a novel and green catalyst was synthesized by the immobilization of Ni on Fe3O4 nanoparticles coated with adenine. The activity of this nanostructure compound was examined for the oxidation of sulfides, oxidative coupling of thiols and synthesis of polyhydroquinolines. The prepared catalyst was characterized by Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP‐OES), X‐ray Diffraction (XRD), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) measurements. This organometallic catalyst was recovered by the assistance of an external magnetic field from the reaction mixture and reused for seven continuous cycles without noticeable change in its catalytic activity.  相似文献   

11.
The immobilization of sulfonic acid on the surface of Fe3O4 magnetic nanoparticles (MNPs) as a novel acid nanocatalyst has been successfully reported. The morphological features, thermal stability, magnetic properties, and other physicochemical properties of the prepared superparamagnetic core–shell (Fe3O4@PFBA–Metformin@SO3H) were thoroughly characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy (EDS), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis–differential thermal analysis (TGA‐DTA), atomic force microscopy (AFM), dynamic light scattering (DLS), Brunauer–Emmett–Teller (BET), and vibrating sample magnetometer (VSM) techniques. It was applied as an efficient and reusable catalyst for the synthesis of 2‐(piperazin‐1‐yl) quinoxaline and benzimidazole derivatives via a one‐pot multiple‐component cascade reaction under green conditions. The results displayed the excellent catalytic activity of Fe3O4@PFBA–metformin@SO3H as an organic–inorganic hybrid nanocatalyst in condensation and multicomponent Mannich‐type reactions. The easy separation, simple workup, excellent stability, and reusability of the nanocatalyst and quantitative yields of products and short reaction time are some outstanding advantages of this protocol.  相似文献   

12.
In this study, the immobilization of sulfonic acid on silica‐layered magnetite was carried out by the reaction of ClSO3H with silica‐layered magnetite. The prepared magnetic nanoparticles of Fe3O4@SiO2‐SO3H were then characterized using scanning electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and transmission electron microscopy. The sulfonated nanocomposite exhibited excellent catalytic activity and reusability in the reduction of various aldoximes and ketoximes with NaBH3CN in the presence of ZrCl4. All reactions were carried out under solvent‐free conditions (r.t. or 75–80°C) within 3–70 min to afford amines in high to excellent yields.  相似文献   

13.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   

14.
An effective one‐pot, convenient process for the synthesis of 1‐ and 5‐substituted 1H‐tetrazoles from nitriles and amines is described using1,4‐dihydroxyanthraquinone–copper(II) supported on Fe3O4@SiO2 magnetic porous nanospheres as a novel recyclable catalyst. The application of this catalyst allows the synthesis of a variety of tetrazoles in good to excellent yields. The preparation of the magnetic nanocatalyst with core–shell structure is presented by using nano‐Fe3O4 as the core, tetraethoxysilane as the silica source and poly(vinyl alcohol) as the surfactant, and then Fe3O4@SiO2 was coated with 1,4‐dihydroxyanthraquinone–copper(II) nanoparticles. The new catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, thermogravimetric analysis, vibration sample magnetometry, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm analysis and inductively coupled plasma analysis. This new procedure offers several advantages such as short reaction times, excellent yields, operational simplicity, practicability and applicability to various substrates and absence of any tedious workup or purification. In addition, the excellent catalytic performance, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the catalyst could be magnetically separated and reused six times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A new magnetic catalyst was prepared through the reaction of silanol groups, on the surface of silica‐coated Fe3O4 magnetic nanoparticles, with (3‐chloropropyl)triethoxysilane followed by hexamethylenetetramine and chlorosulfonic acid. The obtained magnetic catalyst was characterized using thermogravimetric analysis, vibrating sample magnetometry, scanning electron microscopy and energy‐dispersive X‐ray analysis. Its catalytic activity was investigated in the synthesis of pyranopyrazole compounds, and the results were excellent regarding high yield of the products and short reaction time.  相似文献   

16.
A protein imprinting approach for the synthesis of core–shell structure nanoparticles with a magnetic core and molecularly imprinted polymer (MIP) shell was developed using a simple distillation–precipitation polymerization method. In this work, Fe3O4 magnetic nanoparticles were first synthesized through a solvothermal method and then were conveniently surface‐modified with 3‐(methacryloyloxy)propyltrimethoxylsilane as anchor molecules to donate vinyl groups. Next a high‐density MIP shell was coated onto the surface of the magnetic nanoparticles by the copolymerization of functional monomer acrylamide (AAm), cross‐linking agent N,N′‐methylenebisacrylamide (MBA), the initiator azodiisobutyronitrile (AIBN), and protein in acetonitrile heated at reflux. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanoparticles were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and rebinding experiments. The resulting MIP showed a high adsorption capacity (104.8 mg g?1) and specific recognition (imprinting factor=7.6) to lysozyme (Lyz). The as‐prepared Fe3O4@Lyz‐MIP nanoparticles with a mean diameter of 320 nm were coated with an MIP shell that was 20 nm thick, which enabled Fe3O4@Lyz‐MIP to easily reach adsorption equilibrium. The high magnetization saturation (40.35 emu g?1) endows the materials with the convenience of magnetic separation under an external magnetic field and allows them to be subsequently reused. Furthermore, Fe3O4@Lyz‐MIP could selectively extract a target protein from real egg‐white samples under an external magnetic field.  相似文献   

17.
A green, novel and extremely efficient nanocatalyst was successfully synthesized by the immobilization of Ni as a transition metal on Fe3O4 nanoparticles coated with tryptophan. This nanostructured material was characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, inductively coupled plasma optical emission spectroscopy, vibrating sample magnetometry and X‐ray diffraction. The prepared nanocatalyst was applied for the oxidation of sulfides, oxidative coupling of thiols and synthesis of 5‐substituted 1H‐tetrazoles. The use of non‐toxic, green and inexpensive materials, easy separation of magnetic nanoparticles from a reaction mixture using a magnetic field, efficient and one‐pot synthesis, and high yields of products are the most important advantages of this nanocatalyst.  相似文献   

18.
In this work, nano‐CoAl2O4 was prepared and characterized by FT‐IR, energy dispersive X‐ray analysis (EDX), X‐ray diffraction patterns (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM). Nano‐CoAl2O4 was applied for the synthesis of hexahydroquinoline derivatives by the condensation reaction between ethyl acetoacetate, dimedone and various aldehydes. These reactions were carried out at 80 °C under solvent‐free conditions.  相似文献   

19.
In this paper, guanidine groups (Gn) supported on modified magnetic nanoparticles (Fe3O4–4,4′‐MDI) were synthesized for the first time. The catalyst synthesized was characterized by various techniques such as SEM (Scanning Electron Microscopy), TEM (Transmission electron microscopy), XRD ( X‐ray Diffraction ), TGA (Thermogravimetric ananlysis), EDS ( Energy‐dispersive X‐ray spectroscopy ) and VSM (vibrating sample magnetometer). The catalyst activity of modified MNPs–MDI‐Gn, as powerful basic nanocatalyst, was probed through the Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation reactions. Conversion was high under optimal conditions, and reaction time was remarkably shortened. This nanocatalyst could simply be separated and recovered from the reaction mixture by simple magnetic decantation and reused many times without significant loss of its catalytic activity. Also, the nanocatalyst could be recycled for at least seven (Knoevenagel condensation) and six (Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation) additional cycles after they were separated by magnetic decantation and, washed with ethanol, air‐dried, and immediately reused.  相似文献   

20.
Fe3O4 nanoparticles were indirectly implanted onto functionalized multi‐walled carbon nanotubes (MWCNTs) leading to a nanocomposite with stronger magnetic performance. Poly(acrylic acid) (PAA) oligomer was first reacted with hydroxyl‐functionalized MWCNTs (MWCNTs‐OH) forming PAA‐grafted MWCNTs (PAA‐g‐MWCNTs). Subsequently, Fe3O4 nanoparticles were attached onto the surface of PAA‐g‐MWCNTs through an amidation reaction between the amino groups on the surface of Fe3O4 nanoparticles and the carboxyl groups of PAA. Fourier transform infrared spectra confirmed that the Fe3O4 nanoparticles and PAA‐g‐MWCNTs were indeed chemically linked. The morphology of the nanocomposites was characterized using transmission electron microscope (TEM). The surface and bulk structure of the nanocomposites were examined using X‐ray diffraction, X‐ray photoelectron spectrometer (XPS), and thermogravimetric analysis (TGA). The magnetic performance was characterized by vibrating sample magnetometer (VSM) and the magnetic saturation value of the magnetic nanocomposites was 47 emu g?1. The resulting products could be separated from deionized water under an external magnetic field within about 15 s. Finally, the magnetorheological (MR) performances of the synthesized magnetic nanocomposites and pure Fe3O4 nanoparticles were examined using a rotational rheometer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号