首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The condensation of 2‐acetylferrocene with 4‐nitro‐1,2‐phenylenediamine in a 1:1 molar ratio, resulting in formation of a novel bi‐dentate organometallic Schiff base ligand (L), (2‐(1‐((2‐amino‐5‐nitrophenyl)imino)ethyl)cyclopenta‐2,4‐dien‐1‐yl)(cyclopenta‐2,4‐dien‐1‐yl)iron. Also, its Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes have been synthesized. The stoichiometric ratios of the prepared compounds were estimated using elemental analysis (C, H, N, M), molar conductivity, FT‐IR, UV‐Vis, 1H‐NMR, SEM and mass spectral analysis. Furthermore, their TG and DTG properties were studied. The geometrical structure of the complexes was found to be octahedral. From spectral analysis, the Schiff base coordinated to metal ions through the azomethine and amine groups. DFT‐based molecular orbital energy calculations of the synthesized ligand have been studied, in which the ligand was theoretically optimized. The Schiff base and its metal complexes have been screened for their antimicrobial activities against different bacterial and fungal species by using disc diffusion method. The anticancer activities of the ligand and its metal complexes have also been studied towards breast cancer (MCF‐7) and human normal melanocytes (HFB‐4) cell lines. Molecular docking was also used to identify the interaction between the Schiff base ligand and its Cd(II) complex with the active site of the receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), crystal structure of Staphylococcus aureus (PDB ID: 3Q8U) and yeast‐specific serine/threonine protein phosphatase (PPZ1) of Candida albicans (PDB ID:5JPE).  相似文献   

2.
Complexes of cobalt(II), nickel(II) and copper(II) of l ‐histidine Schiff base derived from 2,4‐dihydroxybenzaldehyde and 2‐hydroxy‐1‐naphthaldehyde have been synthesized. The structures of ligands and complexes have been characterized using elemental analysis, molar conductance, magnetic moment measurements, and spectral and thermal studies. The ligands behave as tridentate, coordinating through the azomethine nitrogen and α‐hydroxyl and carboxylic oxygen atoms. The obtained results show that the Cu(II) complexes have square planar geometry, the Co(II) complexes have octahedral and tetrahedral geometries and the Ni(II) complexes have square planar and octahedral geometries. The molecular geometries of the metal complexes are supported by three‐dimensional molecular modelling using molecular mechanics (MM+) and semiempirical molecular orbital calculations (PM3). The inhibition effect of ligands and complexes on the corrosion of aluminium in 2 M H2SO4 was investigated using weight loss. The inhibition efficiency is found to increase with increasing inhibitor concentration and temperature. The increase in inhibition efficiency with increasing temperature is suggestive of a chemical adsorption process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A novel bidentate Schiff base ligand (L) and some d‐transition metal chelates (Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II)) were synthesized and characterized using various physicochemical and spectroscopic techniques like elemental analysis, IR, mass, UV–visible and thermal analysis. The spectroscopic data suggested that the parent Schiff base ligand coordinated to the metal ions through both imine nitrogen atoms. The molecular and electronic structure of the free ligand was optimized theoretically, and the quantum chemical parameters were calculated. The molecular structure can be used to investigate the coordination sites and the total charge density around each atom. The free ligand and its complexes were screened for their antimicrobial activities for various pathogenic bacteria and fungi. The anticancer activities of the free ligand, Cr (III), Mn (II) and Fe (III) complexes were screened against MCF‐7 cell line and found that Mn (II) complex has the lowest IC50 (15.90 μg/ml). Molecular docking was used to predict the binding between the free ligand with receptor of mutant human androgen (ARccr) derived from androgen‐independent prostate cancer (1GS4), crystal structure of yeast‐specific serine/threonine protein phosphatase (ppz1) of Candida Albicans (5JPE) and crystal structure of renal tumor suppressor protein, folliculin (3 V42) and to identify the binding mode and the crucial functional groups interacting with the three proteins.  相似文献   

4.
A new Schiff base ligand named (E)‐2‐(((3‐aminophenyl)imino)methyl)phenol (HL) was prepared through condensation reaction of m‐phenylenediamine and 2‐hydroxybenzaldehyde in 1:1 molar ratio. The new ligand was characterized by elemental analysis and spectral techniques. The coordination behavior of a series of transition metal ions named Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) with the newly prepared Schiff base ligand (HL) is reported. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, IR, UV–Vis, 1H NMR, mass, electronic spectra, magnetic susceptibility and conductivity measurements and further their thermal stability was confirmed by thermogravimetric analysis (TG). From IR spectra, it was observed that the ligand is a neutral tridentate ligand coordinates to the metal ions through protonated phenolic oxygen, azomethine nitrogen and nitrogen atom of NH2 group. The existence, the number and the position of the water molecules was studied by thermal analysis. The molecular structures of the Schiff base ligand (HL) and its metal complexes were optimized theoretically and the quantum chemical parameters were calculated. The synthesized ligand and its complexes were screened for antimicrobial activities against bacterial species (Staphylococcus aureus and Bacillis subtilis, (gram positive bacteria)), (Salmonella SP., Escherichia coli and Pseudomonas aeruginosa, (gram negative bacteria)) and fungi (Aspergillus fumigatus and Candida albicans). The complexes were found to possess high biological activities against different organisms. Molecular docking was used to predict the efficiency of binding between Schiff base ligand (HL) and both receptors of Escherichia coli (3 T88) and Staphylococcus aureus (3Q8U). The receptor of Escherichia coli (3 T88) showed best interaction with Schiff base ligand (HL) compared to receptor of Staphylococcus aureu (3Q8U).  相似文献   

5.
New mixed ligand complexes of transition metals were synthesized from a Schiff base (L1) obtained by the condensation reaction of oxamide and furfural as primary ligand and 2,2′‐bipyridine (L2) as secondary ligand. The ligands and their metal complexes were studied using various spectroscopic methods. Also thermal analyses were conducted. The mixed ligand complexes were found to have formulae [M(L1)(L2)]Clm n H2O (M = Cr(III) and Fe(III): m  = 3, n  = 0; M = Cu(II) and Cd(II): m  = 2, n  = 1; M = Mn(II), Co(II), Ni(II) and Zn(II): m  = 2, n  = 0). The resultant data revealed that the metal complexes have octahedral structure. Also, the mixed ligand complexes are electrolytic. The biological and anticancer activities of the new compounds were tested against breast cancer (MCF‐7) and colon cancer (HCT‐116) cell lines. The results showed high activity for the synthesized compounds.  相似文献   

6.
An organometallic NO‐bidentate Schiff base, (2‐(1‐((1‐carboxyethyl)imino)ethyl) cyclopenta‐2,4‐dien‐1‐yl)(cyclopenta‐2,4‐dien‐1‐yl) iron (HL) was synthesized by condensation of 2‐acetylferrocene with amino acid alanine. Then its octahedral Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) complexes were synthesized. All compounds were characterized on the basis of elemental analysis (C, H, N and M), molar conductivity, FT‐IR, UV–Vis, 1H‐NMR, SEM, mass analysis and thermal studies. Furthermore, computational studies of HL ligand have been carried out by DFT/B3LYP method. HOMO and LUMO energy values, chemical hardness‐softness, electronegativity, electrophilic index and other parameters were calculated. SEM micrographs of HL ligand and its [Cd (HL)(H2O)2Cl2].2H2O complex, showed that they were prepared in nano‐structure forms with particle size 54 and 41 nm, respectively. Antifungal and antibacterial activities of HL ligand and its metal complexes have been screened in vitro against different species such as Aspergillus fumigatus, Candida albicans, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. The synthesized compounds were evaluated for their anticancer activities against breast cancer cell line (MCF‐7) and normal melanocytes cell line (HFB‐4). It was found that [Co (HL)(H2O)2Cl2].3H2O complex had the lowest IC50 value (10.9 μg/ml) and hence was the most active one. Finally, the optimized structures of the Schiff base and its Co (II) complex have been used to accomplish molecular docking studies with receptors of 3HB5, 3MIW, 5IBV and 4WM8 to determine the most preferred mode of interaction.  相似文献   

7.
A novel Schiff base ligand, namely 2,2′‐((1E,1′E)‐(1,3‐phenylenebis(azanylylidene))bis(methanylylidene))diphenol (H2L), was synthesized by condensation of m‐phenylenediamine and 2‐hydroxybenzaldehyde (in 1:2 ratio). Series of complexes were obtained from the reaction of La(III), Er(III) and Yb(III) chlorides with H2L. The ligand and complexes were characterized using elemental analysis, infrared, 1H NMR, UV–visible and mass spectroscopies, magnetic susceptibility and conductivity measurements and thermal analysis. Infrared and 1H NMR spectra indicated the coordination of the azomethine nitrogens and deprotonated phenolic oxygen atoms in a tetradentate manner (ONNO). The thermal behaviour of the complexes was studied from ambient temperature to 1000°C. The complexes were found to have water molecules of hydration and coordinated water molecules. The complexes were found to possess high biological activities against various organisms compared to the free ligand (Gram‐positive bacteria Staphylococcus aureus and Bacillus subtilis, Gram‐negative bacteria Salmonella sp., Escherichia coli and Pseudomonas aeruginosa and fungi Aspergillus fumigatus and Candida albicans). The more effective and probable binding modes between H2L with different active sites of colon cancer (PDB code: 2hq6) and lung cancer (PDB code: 1x2j) receptors were investigated using molecular docking studies.  相似文献   

8.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from indole-3-carboxaldehyde and m-aminobenzoic acid were synthesized and characterized by elemental analysis, molar conductance, IR, UV–Vis, magnetic moment, powder XRD and SEM. The IR results demonstrate the bidentate binding mode of the ligand involving azomethine nitrogen and carboxylato oxygen atoms. The electronic spectral and magnetic moment results indicate that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex is square planar. Powder XRD and SEM indicate the crystalline state and surface morphology studies of the complexes. The antimicrobial activity of the synthesized ligand and its complexes were screened by disc diffusion method. The results show that the metal complexes were found to be more active than the ligand. The nuclease activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence of H2O2. The Cu(II) complex showed increased nuclease activity in the presence of an oxidant when compared to the ligand and other complexes.  相似文献   

9.
The mononuclear Schiff base complexes of the type, [ML(CH3OH)2] [M = Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by template condensation of l-leucine and glyoxal. The complexes have been characterized on the basis of the results of the elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz, FT-IR, Mass, 1H NMR and 13C NMR spectra. The UV–vis and magnetic moment data revealed an octahedral geometry around Co(II), Ni(II) ion with distortion around Cu(II) ion complex confirmed by EPR data. The conductivity data show a non-electrolytic nature of the complexes. Absorption and fluorescence spectroscopic studies support that all the complexes exhibit a significant binding to calf thymus DNA.  相似文献   

10.
A new series of mercaptopyrimidine Ru(III) complexes were synthesized and characterized using various spectral techniques like single‐crystal X‐ray diffraction, Fourier transform infrared and NMR spectroscopies, thermogravimetric analysis and energy‐dispersive X‐ray analysis. The complexes were evaluated for their pharmacological activities like in vitro antimicrobial, anticancer, antituberculosis and antioxidant activities. The DNA binding of the complexes was investigated by absorption and emission spectral measurements which indicated that the complexes bind to DNA via intercalation, with molecular docking studies validating the results. DNA cleavage studies of the complexes were carried out.  相似文献   

11.
A new Schiff base ligand, 2-((E)-((4-(((E)-benzylidene)amino)phenyl)imino)methyl)-naphthalene-1-ol, was prepared by the reflux condensation of p-phenylenediamine with 2-hydroxy-1-naphthaldehyde and benzaldehyde. Metal complexes were prepared by reacting the ligand with metal salts: VCl3, CrCl3·6H2O, MnCl2·3H2O, FeCl3·6H2O, CoCl3·6H2O, NiCl2·6H2O, CuCl2·2H2O, and ZnCl2. The ligand and its metallic complexes were characterized by various techniques such as elemental analysis, AAS, NMR, IR, UV–Vis, TGA, DTA, XRD and TEM. The data confirmed that the ligand coordinated with the metal ions in a bidentate nature, bonding through its azomethine nitrogen atom and phenolic oxygen atom; this gave an octahedral geometry. The XRD patterns of the complexes indicated that they were of various structures: the Mn(II), Co(III), and Cu(II) complexes were triclinic, the ligand and Ni(II) complex were orthorhombic, the V(III) and Zn(II) complexes were hexagonal, the Cu(II) complex was monoclinic, and the Fe(II) complex was cubic. TEM analysis confirmed that the complexes were nanoscale in nature. The antibacterial and antifungal activities of the ligand and its complexes against Salmonella enterica serovar typhi and Candida albicans were investigated by the hole plate diffusion method. It was observed that the Co(II) and Zn(II) complexes had intermediate antibacterial activities, while the V(III) complex had the highest activity against C. albicans fungi. The in vitro anticancer activities of the ligand and its metal complexes were tested towards PC-3, SKOV3, and HeLa tumour cell lines, where they exhibited higher antitumour activities against these selected human cell lines than clinically used drugs such as cisplatin, estramustine, and etoposide.  相似文献   

12.
A series of Cu(II), Co(II), Pd(II), Pt(II), Zn(II), Cd(II) and Fe(III) complexes were designed and synthesized using Schiff base 1‐phenyl‐2,3‐dimethyl‐4‐(N‐3‐formyl‐6‐methylchromone)‐3‐pyrazolin‐5‐one (HL). The new metal complexes were investigated using various physicochemical techniques including elemental and thermal analyses, molar electric conductivity and magnetic susceptibility measurements, as well as spectroscopic methods. Also, the crystal structures of ligand HL and the Pd(II) complex were determined using single‐crystal X‐ray diffraction analysis. For all compounds, the antimicrobial activity was studied against a series of standard strains: Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Escherichia coli, Acinetobacter baumannii, Candida albicans, Candida krusei and Cryptococcus neoformans. The in vitro antiproliferative activity of the ligand and complexes was evaluated against ten cancer cell lines: MSC, A375, B16 4A5, HT‐29, MCF‐7, HEp‐2, BxPC‐3, RD, MDCK and L20B. At 10 μM concentration a significant cytotoxic effect of the Co(II), Pd(II) and Cd(II) complexes was observed against B16 4A5 murine melanoma cells. The Zn(II) complex is active against HEp‐2, RD and MDCK cancer cell lines, where IC50 values vary between 1.0 and 77.6 and for BxPC‐3 the activity index versus doxorubicin is 3.7 times higher.  相似文献   

13.
We synthesized a tridentate Schiff base ligand, 6‐(((2‐hydroxyphenyl)amino)methylene)‐2‐methoxycyclohexa‐2,4‐dienone [H2L], as well as its Mo(VI) complex [MoO2(L)(DMSO)], and then characterized them completely using elemental analysis, FT‐IR, UV–Vis and 1HNMR spectroscopy techniques. X‐ray single crystal diffraction method was used for the determination of the structure of the synthesized ligand and complex. All other spectroscopic techniques performed, confirmed that [MoO2(L)(DMSO)]had an octahedral geometry around the Mo(VI) central ion coordinated by the donor atoms of the deprotonated ligand, two oxido groups and one oxygen atom of DMSO molecule. Hybrid functional B3LYP with DGDZVP as basis set was applied for DFT calculations of the compounds in their ground state. The MEP, Mulliken, HOMO‐LUMO energy gap and thermodynamic properties of the compounds were also theoretically predicted. In‐vitro antimicrobial studies on the synthesized compounds indicated the great antibacterial activities of the Mo(VI) complex against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus bacteria.  相似文献   

14.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:13,14-tribenzo-9,12-dioksa-cyclopentadeca-1,5-diene was synthesized by reaction of 2,6-diaminopyridine and 1,2-bis(2-carboxyaldehyde phenoxy)ethane. Then, its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes were synthesized by the template effect by the reaction of 2,6-diaminopyridine and 1,2-bis(2-carboxyaldehyde phenoxy)ethane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV-Vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements, mass spectra, and cyclic voltammetry. All complexes are diamagnetic and Cu(II) complex is binuclear. The Co(II) was oxidized to Co(III). The comparative electrochemical studies show that the nickel complex exhibited a quasi-reversible one-electron reduction process, while copper and cobalt complexes gave irreversible reduction processes in DMSO solution.  相似文献   

15.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and o-phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.  相似文献   

16.
Coordination compounds of Fe(III), Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II) ions were synthesized from the ligand [4,4′‐((((ethane‐1,2‐diylbis(oxy))bis(2,1‐phenylene))bis(methanylylidene))bis(azanylylidene))diphenol]ethane (H2L) derived from the condensation of bisaldehyde and 4‐aminophenol. Microanalysis, magnetic susceptibility, infrared, 1H NMR and mass spectroscopies, molar conductance, X ray powder diffraction and thermal analysis were used to confirm the structure of the synthesized chelates. According to the data obtained, the composition of the 1:1 metal ion–bis‐Schiff base ligand was found to be [M(H2L)(H2O)2]Cln (M = Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II), n = 2; Fe(III), n = 3). Magnetic susceptibility measurements and reflectance spectra suggested an octahedral geometry for the complexes. Central metals ions and bis‐Schiff base coordinated together via O2 and N2 donor sites which as evident from infrared spectra. The Gaussian09 program was applied to optimize the structural formula for the investigated Schiff base ligand. The energy gaps and other important theoretical parameters were calculated applying the DFT/B3LYP method. Molecular docking using AutoDock tools was utilized to explain the experimental behaviour of the Schiff base ligand towards proteins of Bacillus subtilis (5 h67), Escherichia coli (3 t88), Proteus vulgaris (5i39) and Staphylococcus aureus (3ty7) microorganisms through theoretical calculations. The docked protein receptors were investigated and the energies of hydrogen bonding were calculated. These complexes were then subjected to in vitro antibacterial studies against several organisms, both Gram negative (P. vulgaris and E. coli) and Gram positive (S. pyogones and B. subtilis). The ligand and metal complexes exhibited good microbial activity against the Gram‐positive and Gram‐negative bacteria.  相似文献   

17.
Mononuclear transition metal(II) complexes of the type M(L)2?2H2O (where M = Co, Ni, Cu, Zn) have been synthesized from uninegative Schiff base ligands (HL1–HL4) designed by condensation of 4‐fluorobenzylamine with 2‐hydroxy‐1‐naphthaldehyde/3,5‐dichlorosalicylaldehyde/3,5‐dibromosalicylaldehyde/3‐bromo‐5‐chlorosalicylaldehyde. The compounds were successfully characterized using spectroscopic and physiochemical methods together with elemental analysis. Spectroscopic elucidation indicates a monobasic bidentate nature of ligands coordinated via deprotonated phenolic oxygen and azomethine nitrogen atom which suggests an octahedral geometry around the central metal ions. The complexes and ligands were screened for their in vitro antimicrobial activity against bacterial and fungal strains, the zinc(II) complexes being more active against the tested microbial strains. Further, the metal complexes were found to be more active than the uncomplexed ligands due to chelation process and, moreover, the complexes were more active against fungal strains than bacterial strains. Cytotoxic activities of all compounds were evaluated towards human alveolar adenocarcinoma epithelial cell line (A549), human breast adenocarcinoma cell line (MCF7), human prostate cancer cell line (DU145) and one normal human lung cell line (MRC‐5) using MTT colorimetric assay with doxorubicin as a standard. The zinc complexes were most active against the cancer cell lines and also found to be less toxic against MRC‐5 normal cell line than standard doxorubicin.  相似文献   

18.
19.
《中国化学会会志》2018,65(9):1060-1074
Four divalent metal(II) complexes, namely [Co(II)L(H2O)Cl]·2H2O, [Ni(II)L(H2O)Cl]·4H2O, [Cu(II)L(H2O)Cl]·3H2O, and [Zn(II)L(H2O)Cl]·5H2O, {L = 2‐furan‐2‐ylmethyleneamino‐phenyl‐iminomethylphenol}, were synthesized and characterized by several techniques. The molar conductance measurement of all analyzed complexes in DMSO showed their non‐electrolytic nature. The new Schiff base ligand (HL) acts as tetradentate ligand, coordinated through deprotonated phenolic oxygen, furan ring oxygen, and two azomethine nitrogen atoms. The ligand field parameters were measured for the metal complexes, which were found to be in the range notified for an octahedral structure. The molecular structural parameters of the synthesized HL ligand and its related metal(II) complexes were calculated and correlated with the experimental parameters such as infrared (IR) data. The investigated ligand and metal complexes were screened for their in vitro antimicrobial activities against different types of fungal and bacterial strains. The resulting data confirmed the examined compounds as a highly promising bactericides and fungicides. The antitumor activities of all inspected compounds were evaluated against colon carcinoma (HCT‐116) and mouse myelogenous leukemia carcinoma (M‐NFS‐60) cell lines. The inhibition effect of HL ligand and its isolated complexes on the corrosion carbon in the form of a rod of area 0.35 cm2 in HCl was investigated by measuring the weight loss at 25 °C.  相似文献   

20.
The present paper deals with the synthesis and characterization of Schiff base complexes of pyrazinamide an antitubercular drug. Metals selected for complexation are copper, silver, gold, zinc, mercury, iron and cobalt. The complexes have been suitably synthesized and isolated in pure powdered form. Analytical data agrees with the compositions M(L), M′(L)2 and M″(L)2·2H2O, respectively where M = Ag, M′ = Cu, Au, Zn and Hg and M″ = Fe and Co, ligand metal ratios were also confirmed by monovariation method and Job’s method of continuous variation. Molar conductance values suggest the non ionic nature of the complexes. The tentative structure assigned to the complexes on the basis of stoichiometry and analytical data were further supported by spectral studies viz; IR, NMR, magnetic susceptibility and electronic spectra. A preliminary attempt has also been made to compare the potencies of metal complexes with parent drug. The Cu and Ag complexes are giving encouraging results. Particle size studies further suggest that the drug molecule undergoes reduction in size on complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号