首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the spontaneous size selection in lyotropic cholesteric (W/O) and thermotropic nematic (O/W) liquid crystal emulsions. The droplet sizes have been characterized by dynamic light scattering, which indicates a narrow monomodal distribution of droplets achieved spontaneously even without emulsion filtration. Anchoring of the director, provided by the chosen surfactant on the interface, may generate a topological defect inside the droplet. Below the critical radius R = K/W, determined by the ratio of Frank elastic and the surface anchoring constants, the effective anchoring strength is weak and droplets are not topologically charged; this allows them to coalesce freely, depleting the size distribution in this range. Large droplets possess a topological charge of +1 and present a high elastic energy barrier for pair coalescence; the resulting size distribution is skewed, with R > R, and effectively frozen.  相似文献   

2.
The polymer dispersed nematic liquid crystal (LC) with the tilted surface anchoring has been studied. The droplet orientational structures with two point surface defects – boojums and the surface ring defect – are formed within the films. The director tilt angle α = 40° ± 4° at the droplet interface and LC surface anchoring strength Ws ~ 10–6 (J m?2) have been estimated. The bipolar axes within the studied droplets of oblate ellipsoidal form can be randomly oriented are oriented randomly relatively to the ellipsoid axes as opposed to the droplets with homeotropic and tangential anchoring.  相似文献   

3.
The basic mechanisms determining the formation of optical anisotropy in stretched, thin polymer dispersed liquid crystal (PDLC) films with micron sized nematic droplets have been studied experimentally and the results analysed in terms of a proposed theoretical model. The experiments were performed on PDLC films with the bipolar nematic director configuration in the droplets, where the film transmittance, microscopic structure, and birefringence of the polymer matrix were studied. It is shown that the orientational ordering of bipolar nematic droplets, introducing the main contribution to the ability of stretched PDLC film to polarize the transmitted light, is strongly dependent upon initial droplet shape and the elastic properties of the polymer matrix. The 'anomalous' nematic director orientation is also observed in a portion of elongated droplets where the axes of bipolar configurations do not coincide with the major axes of the droplet cavities due to the presence of inclusions at the cavity walls. The effect of alternation of droplet size and shape upon stretching and the influence of optical anisotropy of the polymer matrix on film transmittance are analysed. On the basis of the results obtained, simple criteria for optimization of main PDLC polarizer performance are formulated.  相似文献   

4.
The orientation order of nanoscale droplets of thermotropic liquid crystals (LCs) suspended in polymer dispersed liquid crystal (PDLC) solutions prepared with different medias (e.g., polymers, surfactants, nonpolar materials like dyes) respond sensitively and differently via molecular interactions. Such a valuable knowledge provides basis for understanding the properties of PDLC devices. Previously, many studies have explored the droplets size, electro-optical property variations in PDLC films by varying the materials types and its compositions. However, the variations in droplet orientation order with respect to material type and composition provide a new class of study in this particular field. The current study explored the transition in droplet orientation from bipolar to radial on varying the amphiphilic block copolymer concentrations. Further, the variations in surface energies of LCs in different series of block copolymer medias were investigated by contact angle measurements.  相似文献   

5.
《Liquid crystals》1997,23(1):113-126
The responses of freely-suspended micron-sized liquid crystal droplets subjected to an alternating electric field are presented. By examining droplets of isotropic, nematic bipolar, and nematic radial configurations, we test the effect of anchoring on the droplet response. Specifically, using birefringence and scattering dichroism we measure the relaxation of electric field-induced orientation following a field pulse. Results indicate that bipolar and radial droplets in suspension orient in the field through very different mechanisms. Bipolar droplets are observed to rotate their defect axes in the field while radial droplets orient through a nematic distortion. By varying the field pulse, we observe that droplets also respond differently to the field depending on their relative sizes. In radial droplet suspensions we quantitatively measure time scales associated with the reorientation and restructuring of the defect region.  相似文献   

6.
Nematic droplets in an isotropic liquid crystal provide an interesting geometrical environment for director alignment, depending on the type of surface used. We prepared three types of substrates with nematic-philic, nematic-phobic, and neutral surfaces. By choosing the proper surface type, we were able to selectively produce three types of droplets (suspended, one-side anchored, and double-side anchored) near the phase transition temperature. These droplets exhibited single-polar or bipolar defects depending on the anchoring status. The one-side anchored and the suspended droplets underwent anchoring transitions in one-step and in two-steps processes on cooling, respectively. A hybrid cell with two types of substrates exhibited a truncated cone-shaped droplet, and two nearby cone-shaped droplets produced a stable doule-curved surface geometry with a saddle point of – 1 defect between isotropic-nematic boundaries. The mergence of these droplets was also investigated.  相似文献   

7.
A polystyrene macro-iniferter was applied to control the alignment of liquid crystal molecules at the droplet wall of polymer dispersed liquid crystal (PDLC) films. The aspects of the alignment were monitored by observing the droplet in the PDLC film. With increasing the macro-iniferter polystyrene in the composition, the configuration of LC droplets changes from bipolar to radial. This is because the high concentration of the macro-iniferter polystyrene results in a small surface interaction between the LC and the polymer matrix, which favours the formation of radial configuration. The radial configuration was stable under our conditions. However, increasing the LC and the initiator concentrations resulted in the change from radial to bipolar.  相似文献   

8.
In this paper, we report an immunoassay in which probe proteins are immobilized on the surface of liquid crystal (LC) droplets rather than on solid surfaces. The advantage of this immunoassay is that the binding of antibodies to the probe proteins can be transduced by the LC droplets directly without the need for additional steps. For example, when we incubate the LC droplets decorated with immunoglobulin G (IgG) in a solution containing anti-IgG (AIgG), these droplets change their orientations from radial to bipolar configuration. In contrast, when we incubate the IgG-LC droplets in a solution containing anti-human serum albumin (AHSA), no changes are observed. The change of orientational configuration indicates the formation of the antigen-antibody immunocomplex on the surface of the LC droplets. Using LC droplet immunoassays, we successfully detect antibody concentrations as low as 0.01 μg/mL for AIgG and 0.02 μg/mL for AHSA. Because the immunoassay using LC droplets is label-free and gives a unique optical response, it has the potential to be further developed as a portable and low-cost immunoassay.  相似文献   

9.
The nematic liquid crystals (LCs) are randomly dispersed material with random orientation order in polymer dispersed liquid crystal (PDLC) films. The LCs change their orientation from random to vertical as electric field is applied. This transformation of orientation order of nematic liquid crystals in the PDLC films is controlled by many factors operating simultaneously. For instance, some factors like the internal forces of attractions among the neighboring LC molecules, anchoring with polymeric matrix, ITO glass boundaries, and chemical structures of the materials are less studied. The learning of extent of vertical orientation of liquid crystal droplets in an electric field is essential to attain optimum electro optical properties of PDLCs. In this finding, bipolar and radial LCs droplets with random orientation have been observed in non-acrylic polymeric media. It is learned that with small increase of contents of external material, the extent of vertical orientation has been varied intensely. The extent of vertical orientation of LCs molecules increases as the contents of external non-acrylic polymeric material decreased. For this study, the orientations of LCs with respect to material type/contents, external applied force, and restoration of electric filed as hysteresis have been studied in details.  相似文献   

10.
We experimentally studied a nematic liquid crystal whose molecules form twisted head-to-head H-bonded dimers. We observed that when the material transformed from the isotropic to nematic phase, it formed droplets with chiral propeller textures. We carried out a computer simulation to investigate the liquid crystal director configuration inside the droplets and to study the effects of elastic constants and chirality on the droplet texture. Results of our study show it is likely that the material in the droplets had nonzero chirality due to spontaneous chiral phase separation.  相似文献   

11.
Here, we report a simple and label-free methodology for real-time monitoring of adsorption of proteins such as bovine serum albumin (BSA), concanavalin A (ConA) (a lectin) and cathepsin D (CathD) (a tumour marker) on micrometer-sized poly (L-lysine) (PLL) functionalised liquid crystal (LC) droplets dispersed in aqueous phases. Earlier, we had demonstrated that PLL, a positively charged natural peptide, can induce homeotropic ordering of LCs at LC-aqueous interface, and thus PLL-adsorbed LC droplets showed radial director configuration. Herein, it was observed that subsequent non-specific adsorption of anionic proteins such as BSA, ConA and CathD can trigger a quick transition in director configuration of PLL-LC droplets (primarily dominated by electrostatic interactions) to pre-radial or bipolar, thus acting as a simple optical probe for detection of these proteins up to μg/mL of concentrations. Further, the detection limits for these proteins are found to vary (BSA<ConA<CathD) which follow the similar order as their anionic charges, thus suggesting the role of different binding affinities of protein-PLL in realising the director configuration of LC droplets. Overall, this study offers new pathways utilising ordering transition in LC droplets which will strengthen the principles to recognise biomolecular interactions for various interfacial and sensing applications.  相似文献   

12.
Polymer dispersed liquid crystals (PDLCs) have been extensively studied for various excellent electro-optical applications. The anchoring interaction of liquid crystals (LCs) molecules on the surface of the polymer cavity surrounding an LCs droplet has a crucial effect on the electro-optical performance of the PDLCs. The effect of polymerizable surfactants on the electro-optical properties of PDLCs films was studied in detail. The active double bonds were polymerized with prepolymer to stabilize the performance of polymer matrix. The experimental results showed that polymerizable surfactants could effectively reduce the driving voltage. The speed of polymerization was monitored by real-time transmittance. The electro-optical properties of PDLC films were measured by Polarimeter (PerkinElmer Model 341). The driving electric field was reduced from 3.9 V/μm to about 2.8 V/μm for doping undec-10-enoic acid at curing temperature 80?°C. The surfactants containing polymerizable functional groups, polarity, and alkyl chain weakened the surface anchoring between LCs droplets and polymer interface. The morphologies of PDLCs films were also investigated by polarizing optical microscopy (POM) and Fourier transform infrared (FTIR) images. The LC droplets were encapsulated by polymerizable surfactant according to FTIR images.  相似文献   

13.
Dynamic electro-optic response of the liquid crystal (LC) director shows a backflow effect that is manifested as an optical bounce in chiral nematic LCs (N*LC) during field-induced homeotropic-twisted transition. The bend elastic constant (K33) strongly influences the dynamics of backflow at the N*LC in homeotropic-twisted transition. The cyanobiphenyl LC dimers – CB7CB, CB9CB and CB11CB – possess a unique characteristic of inherent bend molecular configuration that lowers K33. With the modulation of the effective K33 in dimer-doped N*LCs, we report the tunability of the optical bounce that decreases with the increase in the length of flexible spacers in LC dimers. The doped LC dimers with short spacer lengths not only generate a strong backflow with an enhanced twist degeneracy of the LC director across the cell, but also prolong the time of disappearance of the optical bounce. Furthermore, we demonstrate the suppression of the optical bounce with surface localised polymer protrusions having 50–100 nm diameters, which allow faster dynamic relaxation process and reduced backflow. We envision a novel design of a tunable microfluidic device for precise flow control of organic or inorganic matter in LC medium that exploits the tunable backflow in LC dimer-doped N*LCs.  相似文献   

14.
《Liquid crystals》1997,23(2):193-203
In this paper the director configurations and the free energies of a nematic droplet with a surface normal anchoring condition are calculated numerically. For this surface anchoring, a transition occurs between the radial and axial structures with respect to an applied field. In the calculation of the director configurations, the position of a disclination has been fixed. Comparing the free energies for different disclinations, the stable position which gives the minimum free energy is found. In calculating the free energy of a droplet, it is assumed that the free energy density of the nematic phase does not exceed the isotropic free energy density, so that the large distortion in the vicinity of the disclination causes a nematic-isotropic transition and the free energy density of the disclination core becomes equal to the isotropic free energy density. The director configuration in a droplet is calculated as a function of an applied field for different isotropic free energy densities, elastic constant ratios and droplet shapes. The relation between the radial-axial structure transition and these factors are clarified.  相似文献   

15.
We report the study of optical textures and director configurations within nematic-in-water microdroplets of the liquid-crystalline mixtures based on azoxybenzene and cyanobiphenyl (as a polar dopant). Both pure azoxybenzene and polar dopant materials exhibited bipolar configuration within liquid-crystalline droplets, whereas their mixtures at appropriate concentrations spontaneously formed radial droplets. It was found that increasing of the dopant’s concentration resulted in the forward tangential-homeotropic and reentrant homeotropic-tangential anchoring transitions. We also triggered bipolar-to-radial structural transition by UV irradiation providing trans-cis isomerisation of nematogens. Critical irradiation time needed for radial configuration formation was found to decrease with concentration of polar dopant. Mesoscoping modelling is proposed to explain main experimental results. The presented data are discussed for chemical and biological sensing applications.  相似文献   

16.
Thermotropic ionic liquid crystals (LCs) are useful for a number of applications such as anisotropic ion transport and as organised reaction media/solvents because of their ordered fluid properties and intrinsic charge units. A large number of different ionic LC architectures are known, but only a handful of examples of gemini (i.e. paired or dimeric) ionic LCs have been prepared and studied. In this work, a series of 20 new symmetric, imidazolium-based, gemini cationic LCs containing two bridged imidazolium cations and two pendant alkyl chains was synthesised, and the thermotropic LC behaviours were characterised. The imidazolium unit provides a highly tunable and modular platform for the design and synthesis of gemini cationic LCs which offers excellent structure control. As expected, the thermotropic LC properties of these new amphilphilic, gemini ionic LCs were found to be strongly influenced by the length of the spacer between the imidazolium units, the length of the pendant alkyl tails, and the nature of the anion. Smectic A (SmA) thermotropic LC phases were observed in more than half of the gemini imidazolium LC systems studied.  相似文献   

17.
This paper is devoted to the molecular dynamics simulation of structural organization inside a polydispersed liquid crystal (LC) droplet under competing boundary conditions. The droplet is assumed to be placed at the liquid crystal interface between two different regions of the solid polymer matrix, which accordingly separates the droplet into two hemispheres: the first of these is under radial boundary conditions; the second hemisphere is under bipolar boundary conditions. The droplet is considered as a jagged sphere filled with LC molecules, modelled as classical spins (unit vectors), whose centres of mass are associated with sites of a cubic lattice inside the cavity. The orienting action of the polymer matrix, and hence the resulting boundary conditions, are modelled by the interaction between the internal LC molecules (possessing only orientational degrees of freedom), and those of a delimiting surface layer (a jagged spherical shell), whose orientations are fixed, radial or bipolar, respectively. All interactions are modelled by the short range McMillan pair potential. The molecular orientation inside the LC droplet has been determined for various anchoring strengths of the interaction between internal spins and boundary layers. We have investigated the structure of the spherical defect resulting in the central region of the droplet, as well as of the boojum ‐ like defects existing near the poles of the droplet. It has been found that a change of relative radial and bipolar anchoring strengths can affect both central and boojum ‐ like defects. The effect of an external field on the molecular orientation inside the droplet has also been investigated. It has been found that a sufficiently strong external field increases the radius of the spherical defect placed in the central region of the droplet.  相似文献   

18.
This paper is devoted to the molecular dynamics simulation of structural organization inside a polydispersed liquid crystal (LC) droplet under competing boundary conditions. The droplet is assumed to be placed at the liquid crystal interface between two different regions of the solid polymer matrix, which accordingly separates the droplet into two hemispheres: the first of these is under radial boundary conditions; the second hemisphere is under bipolar boundary conditions. The droplet is considered as a jagged sphere filled with LC molecules, modelled as classical spins (unit vectors), whose centres of mass are associated with sites of a cubic lattice inside the cavity. The orienting action of the polymer matrix, and hence the resulting boundary conditions, are modelled by the interaction between the internal LC molecules (possessing only orientational degrees of freedom), and those of a delimiting surface layer (a jagged spherical shell), whose orientations are fixed, radial or bipolar, respectively. All interactions are modelled by the short range McMillan pair potential. The molecular orientation inside the LC droplet has been determined for various anchoring strengths of the interaction between internal spins and boundary layers. We have investigated the structure of the spherical defect resulting in the central region of the droplet, as well as of the boojum - like defects existing near the poles of the droplet. It has been found that a change of relative radial and bipolar anchoring strengths can affect both central and boojum - like defects. The effect of an external field on the molecular orientation inside the droplet has also been investigated. It has been found that a sufficiently strong external field increases the radius of the spherical defect placed in the central region of the droplet.  相似文献   

19.
A new method for measuring a polar anchoring energy of nematic liquid crystals (LCs) is proposed. A variation of LC tilt angle on the surface with an applied electrical field was determined by a reflective method. The twisted LC cell configuration was selected to compensate a contribution of the induced birefringence in the reflective spectra. The electrical field controlled reflectance was used to analyse the potential form of the polar anchoring energy and to define the anchoring strength. The proposed method is applicable for 2–5 μm thick LC cells.  相似文献   

20.
Liquid‐crystal (LC) droplet patterns are formed on a glass slide by evaporating a solution of nematic LC dissolved in heptane. In the presence of an anionic phospholipid, 1,2‐dioleoyl‐sn‐glycero‐3‐phospho‐rac‐(1‐glycerol) (DOPG), the LCs display a dark cross pattern, indicating a homeotropic orientation. When LC patterns are incubated with an aqueous mixture of DOPG and poly‐L ‐lysine (PLL), there is a transition in the LC pattern from a dark cross to a bright fan shape due to the electrostatic interaction between DOPG and PLL. Known to catalyze the hydrolysis of PLL into oligopeptide fragments, trypsin is preincubated with PLL, significantly decreasing the interactions between PLL and DOPG. LCs adopt a perpendicular orientation at the water–LC droplet interface, which gives rise to a dark cross pattern. This optical response of LC droplets is the basis for a quick and sensitive biosensor for trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号