首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method is reported for the synthesis of benzoxanthenone and 3‐pyranylindole derivatives via one‐pot three‐component reactions using a newly synthesized HAp‐encapsulated γ‐Fe2O3‐supported dual acidic heterogeneous catalyst, as a reusable and highly efficient nanocatalyst. In this protocol the use of the nanocatalyst provided a green, useful and rapid method to generate products in short reaction times (4–20 min) and in excellent yields (87–96%). The paramagnetic nature of the catalyst provided a simple, trouble‐free and facile approach for the separation of the catalyst by applying an external magnet, and it could be used in eight cycles without significant loss in catalytic efficiency.  相似文献   

2.
A heterogeneous material composed of MCM‐48/H5PW10V2O40 was produced and used as an efficient, eco‐friendly and highly recyclable catalyst for the one‐pot and multicomponent synthesis of 3,4‐dihydroquinoxalin‐2‐amine, diazepine‐tetrazole and benzodiazepine‐2‐carboxamide derivatives in aqueous media and at room temperature with high yields in short reaction times (40–60 min). The recoverable catalyst was easily recycled at least five times without any loss of catalytic activity. The structures of obtained products were confirmed using 1H NMR and 13C NMR spectra.  相似文献   

3.
Perylene diimide‐modified magnetic γ‐Fe2O3/CeO2 nanoparticles (γ‐Fe2O3/CeO2‐PDI) were prepared and exhibited excellent peroxidase‐like activity. The samples were characterized by HR‐TEM, XRD, Raman, N2 adsorption, magnetic strength and XPS. The obtained γ‐Fe2O3/CeO2‐PDI had size of 10~20 nm with high specific surface area of 77 m2/g, and could be easily separated from the aqueous solution by using a magnet, which are in favor of its practical application. Due to the decoration of PDI, the γ‐Fe2O3/CeO2‐PDI possessed more surface defects (Ce3+) and active oxygen species than that of γ‐Fe2O3/CeO2, resulting in the outstanding catalytic performance. And the composite catalyst also showed highly sensitive and selectivity toward VC with a limit of detection of 0.45 μM. Based on the fluorescent results, a possible hydroxyl radical (?OH) catalytic mechanism was proposed. It is believed that the as‐prepared γ‐Fe2O3/CeO2‐PDI nanoparticles are promising biosensors applied for biomedical and food analysis.  相似文献   

4.
A novel magnetic hybrid system containing nano‐magnetic Fe2O3 hollow spheres, silica shell, [pmim]Cl ionic liquid and silver nanoparticles was synthesized and characterized. The silver nanoparticles were prepared via biosynthesis using Achillea millefolium flower as reducing and stabilizing agent. The hybrid system was successfully used as an efficient and reusable catalyst for promoting green ultrasonic‐assisted A3 and KA2 coupling reactions as well as benzo[b]furan synthesis. It was found that decoration of the magnetic core with non‐magnetic moieties decreased the maximum saturation magnetization. However, the catalyst was still superparamagnetic and could be simply separated from the reaction mixture using an external magnet. The heterogeneous nature of the catalyst was also confirmed by studying its reusability and stability and the leaching of silver. Use of aqueous media, high yields, short reaction times, broad substrate tolerance and low required amount of catalyst are the merits of this protocol.  相似文献   

5.
NH2SO3H–SiO2/water as a novel catalytic system was used for the synthesis of (α,β‐unsaturated) β‐amino ketones via aza‐Michael reaction at reflux conditions. The methodology was of general applicability and the catalyst exhibited activity up to five cycles. The catalyst was characterized for the first time using FT‐IR, X‐ray diffraction and scanning electron microscopic–energy dispersion analytical X‐ray. The stability of the catalyst was evaluated by differential scanning calorimetry and TGA/differential thermal analysis. High efficiency of the catalyst along with its recycling ability and the rather low loading demonstrated in reactions are the merits of the presented protocol. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Four structures of oxoindolyl α‐hydroxy‐β‐amino acid derivatives, namely, methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐methoxy‐2‐phenylacetate, C24H28N2O6, (I), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐ethoxy‐2‐phenylacetate, C25H30N2O6, (II), methyl 2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐[(4‐methoxybenzyl)oxy]‐2‐phenylacetate, C31H34N2O7, (III), and methyl 2‐[(anthracen‐9‐yl)methoxy]‐2‐{3‐[(tert‐butoxycarbonyl)amino]‐1‐methyl‐2‐oxoindolin‐3‐yl}‐2‐phenylacetate, C38H36N2O6, (IV), have been determined. The diastereoselectivity of the chemical reaction involving α‐diazoesters and isatin imines in the presence of benzyl alcohol is confirmed through the relative configuration of the two stereogenic centres. In esters (I) and (III), the amide group adopts an anti conformation, whereas the conformation is syn in esters (II) and (IV). Nevertheless, the amide group forms intramolecular N—H...O hydrogen bonds with the ester and ether O atoms in all four structures. The ether‐linked substituents are in the extended conformation in all four structures. Ester (II) is dominated by intermolecular N—H...O hydrogen‐bond interactions. In contrast, the remaining three structures are sustained by C—H...O hydrogen‐bond interactions.  相似文献   

7.
A heterogeneous catalyst (HPW/mpg‐C3N4) for the alkylation of o‐xylene and styrene reaction was acquired by the immobilization of phosphotungstic acid (HPW) on mesoporous graphitic carbon nitride (mpg‐C3N4) through electrostatic interaction. The results of Fourier transform infrared spectroscopy (FT‐IR), X‐ray powder diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) proved that HPW was successfully immobilized on the protonated mpg‐C3N4 by electrostatic interaction. The textural properties and morphology of HPW/mpg‐C3N4 were characterized by N2 adsorption–desorption, scanning electron microscopy (SEM). Among them, 40% HPW/mpg‐C3N4 displays the best catalytic performance in the alkylation reaction with 91.8% yield and 96.5% selectivity to 1, 2‐diphenylethylane. Moreover, protonated mpg‐C3N4 not only displays as a support to facilitate great dispersion of HPW but also promotes the alkylation product diffusion effectively. Besides, the HPW/mpg‐C3N4 catalyst could be recycled easily without significant loss of catalytic activity, which is demonstrate by the recyclability of HPW/mpg‐C3N4 catalyst test.  相似文献   

8.
The synthesis and structure of heteroleptic tetrylenes containing bifunctional β‐diketiminate ligand are reported. Compounds were prepared via a protolytic reaction of free β‐diketimine {N‐[(2‐MeO)C6H5]}N═C(Me)CH═C(Me)N(H){N′‐[(2‐MeO)C6H5]} (LCOH) and {N‐[(2‐MeO)C6H5]}N?CHCH?CHN(H){N′‐[(2‐MeO)C6H5]} (LHOH), respectively, with corresponding bis(amide) – M[N(SiMe3)2]2 (M = Ge, Sn, Pb) – in equimolar ratio or via the salt elimination route from lithium precursors generated from LHOH/LCOH species and slight excess of SnCl2 or GeCl2.dioxane complex. Only heteroleptic complexes were obtained by the mentioned methods. Products were characterized by multinuclear NMR spectroscopy techniques and structures of four of them have been determined by X‐ray diffraction methods. Complexes LHOGeCl and LCOSnN(SiMe3)2 crystallize as monomers with the three‐coordinated metal centres by one chloro or amido ligand and one bidentate β‐diketiminato unit, in contrast to the structure of LCOSnCl, which reveals a dimeric character and compound LCOPbN(SiMe3)2, where the central atom of lead is five‐coordinated by methoxy groups of the ligand. Complex LCOSnN(SiMe3)2 was tested as a catalyst for polymerization of various epoxides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, Ag, Ni2+, and Fe2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 nanoparticles (γ‐Fe2O3@HAp‐Ag, γ‐Fe2O3@HAp‐Ni2+, and γ‐Fe2O3@HAp‐Fe2+) as a new and reusable Lewis acid magnetic nanocatalyst was successfully synthesized and reported for an atom economic, extremely facile, and environmentally benign procedure for the synthesis of highly functionalized tetrahydropyridines derivatives 4a‐t is described by one‐pot five‐component reaction of 2 equiv of aldehydes 1 , 2 equiv of amines 2 , and 1 equiv of methyl acetoacetate 3 in EtOH at room temperature in good to high yields and short reaction time. The presented methodology offers several advantages such as easy work‐up procedure, reusability of the magnetic nanocatalyst, operational simplicity, green synthesis avoiding toxic reagents and solvent, mild reaction conditions, and no tedious column chromatographic separation.  相似文献   

10.
Catalytic direct dehydrogenation of methanol to formaldehyde was carried out over Ag‐SiO2‐MgO‐Al2O3 catalysts prepared by sol‐gel method. The optimal preparation mass fractions were determined as 8.3% MgO, 16.5% Al2O3 and 20% silver loading. Using this optimum catalyst, excellent activity and selectivity were obtained. The conversion of methanol and the selectivity to formaldehyde both reached 100%, which were much higher than other previously reported silver supported catalysts. Based on combined characterizations, such as X‐ray diffraction (XRD), scanning electronic microscopy (SEM), diffuse reflectance ultraviolet‐visible spectroscopy (UV‐Vis, DRS), nitrogen adsorption at low temperature, temperature programmed desorption of ammonia (NH3‐TPD), desorption of CO2 (CO2‐TPD), etc., the correlation of the catalytic performance to the structural properties of the Ag‐SiO2‐ MgO‐Al2O3 catalyst was discussed in detail. This perfect catalytic performance in the direct dehydrogenation of methanol to formaldehyde without any side‐products is attributed to its unique flower‐like structure with a surface area less than 1 m2/g, and the strong interactions between neutralized support and the nano‐sized Ag particles as active centers.  相似文献   

11.
A magnetically separable graphitic carbon nitride nanocomposite (Fe3O4/g‐C3N4) as a catalyst for the three‐component condensation reactions of carbonyl compounds, amines and trimethylsilylcyanide was thoroughly investigated. The reaction of these three components was found to be efficient, economical and green and took place in the presence of a catalytic amount of the magnetically separable catalyst to yield the corresponding α‐aminonitriles in good to excellent yields. The prepared nanocomposite was characterized using scanning electron microscopy and energy‐dispersive X‐ray and Fourier transform infrared spectroscopies. The nanocomposite was also found to be reusable could be recovered easily and reused several times without distinct deterioration in its catalytic activity.  相似文献   

12.
An efficient and simple method developed for the synthesis of 6‐methyl‐1,2,3,4‐tetrahydro‐N‐aryl‐2‐oxo/thio‐4‐arylpyrimidine‐5‐carboxamide derivatives ( 4a‐o ) using UO2(NO3)2.6H2O catalyst under conventional and ultrasonic conditions. The ultrasound irradiation synthesis had shown several advantages such as milder conditions, shorter reaction times and higher yields. The structures of all the newly synthesized compounds have been confirmed by FT‐IR, 1H NMR, 13C NMR and mass spectra.  相似文献   

13.
Reaction of AgNO3 and 2,2′‐bipyridine (bipy) under ultrasonic treatment gave the title compound, [Ag(C10H8N2)(NH3)]NO3. The crystal structure consists of dimers formed by two symmetry‐related AgI–bipy monomers connected through intra‐dimer π–π stacking and ligand‐unsupported Ag...Ag interactions. A crystallographic C2 axis passes through the mid‐point of and is perpendicular to the Ag...Agi(−x + 1, y, −z + ) axis. In addition, each AgI cation is coordinated by one chelating bipy ligand and one ammine ligand, giving a trigonal coordination environment capped by the symmetry‐equivalent Ag atom. Molecules are assembled by Ag...Ag, π–π, hydrogen‐bond (N—H...O and C—H...O) and weak Ag...π interactions into a three‐dimensional framework. Comparing the products synthesized under different mechanical treatments, we found that reaction conditions have a significant influence on the resulting structures. The luminescence properties of the title compound are also discussed.  相似文献   

14.
The title compound, {[Ag(C6H7AsNO3)(C18H15P)]·H2O}n, has been synthesized from the reaction of 4‐aminophenylarsonic acid with silver nitrate, in aqueous ammonia, with the addition of triphenylphosphane (PPh3). The AgI centre is four‐coordinated by one amino N atom, one PPh3 P atom and two arsonate O atoms, forming a severely distorted [AgNPO2] tetrahedron. Two AgI‐centred tetrahedra are held together to produce a dinuclear [Ag2O2N2P2] unit by sharing an O–O edge. 4‐Aminophenylarsonate (Hapa) adopts a μ3‐κ3N:O:O‐tridentate coordination mode connecting two dinuclear units, resulting in a neutral [Ag(Hapa)(PPh3)]n layer lying parallel to the (10) plane. The PPh3 ligands are suspended on both sides of the [Ag(Hapa)(PPh3)]n layer, displaying up and down orientations. There is an R22(8) hydrogen‐bonded dimer involving two arsonate groups from two Hapa ligands related by a centre of inversion. Additionally, there are hydrogen‐bonding interactions involving the solvent water molecules and the arsonate and amine groups of the Hapa ligands, and weak π–π stacking interactions within the [Ag(Hapa)(PPh3)]n layer. These two‐dimensional layers are further assembled by weak van der Waals interactions to form the final architecture.  相似文献   

15.
CeO2‐promoted Na‐Mn‐W/SiO2 catalyst has been studied for catalytic oxidation of methane in a micro‐stainless‐steel reactor at elevated pressure. The effect of operating conditions, such as GHSV, pressure and CH4/O2 ratio, has been investigated. 22.0% CH4 conversion with 73.8% C2‐C4 selectivity (C2/C3/C4 = 3.8/1.0/3.6) was obtained at 1003 K, 1.5 × 105 h?;1 GHSV and 1.0 MPa. The results show: Elevated pressure disadvantages the catalytic oxidation of methane to C2‐C4 hydrocarbons. Large amounts of C3 and C4 hydrocarbons are observed. The unfavorable effects of elevated pressure can be overcome by increasing GHSV; the reaction is strongly dependent on the operating conditions at elevated pressure, particularly dependent on GHSV and ratio of CH4/O2. Analyses by means of XRD, XPS and CO2‐TPD show that CO2 produced from the reaction makes a weakly poisoning capacity of the catalyst; information of changeful valence on Ce and Mn was detected over the near‐surface of the Ce‐Na‐W‐Mn/SiO2 catalyst; the existence of Ce3+/Ce4+ and Mn2+/Mn3+ ion couple supported that the reaction over the catalyst followed the Redeal‐Redox mechanism. Oxidative re‐coupling of C2H6 and CH4 in gas phase or over surface of catalyst produces C3 or C4 hydrocarbons.  相似文献   

16.
Millimeter size γ‐Al2O3 beads were prepared by alginate assisted sol–gel method and grafting organic groups with propyl sulfonic acid and alkyl groups as functionalized γ‐Al2O3 bead catalysts for fructose dehydration to 5‐hydroxymethylfurfural (5‐HMF). Experiment results showed that the porous structure of γ‐Al2O3 beads was favorable to the loading and dispersion of active components, and had an obvious effect on the properties of the catalyst. The lower calcination temperature of γ‐Al2O3 beads increased the specific surface area, the hydrophobicity and the activity of catalysts. Competition between the reaction of alkyl groups and ‐SH groups with surface hydroxyl during the preparation process of the catalyst influenced greatly the acid site densities, hydrophobic properties and activity of the catalyst. With an increase in the alkyl group chain, the hydrophobicity of catalysts increased obviously and the activity of the catalyst was enhanced. The most hydrophobic catalyst C16‐SO3H‐γ‐Al2O3–650°C exhibited the highest yield of 5‐HMF (84%) under the following reaction conditions: reaction medium of dimethylsulfoxide/H2O (V/V, 4:1), catalyst amount of 30 mg, temperature of 110°C and reaction time of 4 hr.  相似文献   

17.
Atmospheric ethylene reactions were studied with backbone fluorinated β‐diketiminato Ni(II) complexes CH{C(CF3)NAr}2NiBr (1, Ar = 2,6‐Me2C6H3, and 2 2,6‐iPr2C6H3) activated by methylaluminoxane (MAO). The catalytic systems exhibit the characteristics of catalyzing simultaneously polymerization and oligomerization of ethylene, indicating different active species involved in the reaction system. In an effort to investigate the alkylation species involved in the β‐diketiminato nickel (II)/MAO system, the reaction of 1 with methylaluminoxane were studied. With 19F{1H NMR} spectra, two sets of new signals different from 1 were presented. Two alkylation products were proposed precursors of active species for producing oligomer and polymer of ethylene in the β‐diketiminato Ni(II)/MAO system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Electrolytic ammonia synthesis from nitrogen at ambient conditions is appearing as a promising alternative to the Haber‐Bosch process which is consuming high energy and emitting CO2. Here, a typical MOF material, HKUST‐1 (Cu?BTC, BTC=benzene‐1,3,5‐tricarboxylate), was selected as an electrocatalyst for the reaction of converting N2 to NH3 under ambient conditions. At ?0.75 V vs. reversible hydrogen electrode, it achieves excellent catalytic performance in the electrochemical synthesis of ammonia with high NH3 yield (46.63 μg h?1 mg?1 cat. or 4.66 μg h?1 cm?2) and good Faraday efficiency (2.45%). It is indicated that the good performance of the HKUST‐1 catalyst may originate from the formation of Cu(I). In addition, the catalyst also has good selectivity for N2 to NH3.  相似文献   

19.
2, 4‐Dimethylpenta‐1, 3‐diene and 2, 4‐Dimethylpentadienyl Complexes of Rhodium and Iridium The complexes [(η4‐C7H12)RhCl]2 ( 1 ) (C7H12 = 2, 4‐dimethylpenta‐1, 3‐diene) and [(η4‐C7H12)2IrCl] ( 2 ) were obtained by interaction of C7H12 with [(η2‐C2H4)2RhCl]2 and [(η2‐cyclooctene)2IrCl]2, respectively. The reaction of 1 or 2 with CpTl (Cp = η5‐C5H5) yields the compounds [CpM(η4‐C7H12)] ( 3a : M = Rh; 3b : M = Ir). The hydride abstraction at the pentadiene ligand of 3a , b with Ph3CBF4 proceeds differently depending on the solvent. In acetone or THF the “half‐open” metallocenium complexes [CpM(η5‐C7H11)]BF4 ( 4a : M = Rh; 4b : M = Ir) are obtained exclusively. In dichloromethane mixtures are produced which additionally contain the species [(η5‐C7H11)M(η5‐C5H4CPh3)]BF4 ( 5a : M = Rh; 5b : M = Ir) formed by electrophilic substitution at the Cp ring, as well as the η3‐2, 4‐dimethylpentenyl compound [(η3‐C7H13)Rh{η5‐C5H3(CPh3)2}]BF4 ( 6 ). By interaction of 2, 4‐dimethylpentadienyl potassium with 1 or 2 the complexes [(η4‐C7H12)M(η5‐C7H11)] ( 7a : M = Rh; 7b : M = Ir) are generated which show dynamic behaviour in solution; however, attempts to synthesize the “open” metallocenium cations [(η5‐C7H11)2M]+ by hydride abstraction from 7a , b failed. The new compounds were characterized by elemental analysis and spectroscopically, 4b and 5a also by X‐ray structure analysis.  相似文献   

20.
The local distortions and electron paramagnetic resonance parameters for Cu2+ in the mixed alkali borate glasses xNa2O‐(30–x)K2O‐70B2O3 (5 ≤ x ≤ 25 mol%) are theoretically studied with distinct modifier Na2O compositions x. Owing to the Jahn–Teller effect, the octahedral [CuO6]10− clusters show significant tetragonal elongation ratios p ~19% along the C4 axis. With the increase of composition x, the cubic field parameter Dq and the orbital reduction factor k exhibit linearly and quasi‐linearly decreasing tendencies, respectively, whereas the relative tetragonal elongation ratio p has quasi‐linearly increasing rule with some fluctuations, leading to the minima of g factors at x = 10 mol%. The composition dependences of the optical spectra and the electron paramagnetic resonance parameters are suitably reproduced by the linear or quasi‐linear relationships of the relevant quantities (i.e., Dq, k, and p) with x. The above composition dependences are analyzed from mixed alkali effect, which brings forward the modifications of the local crystal‐fields and the electronic cloud distribution around Cu2+ with the variation of the composition of Na2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号