首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A new series of multi-arm chiral liquid crystals (LCs) D1–D3 were synthesised and characterised. Cholic acid was used as the core and ω-[4-(p-alkoxybenzoloxy)phenoxycarbonyl]valeric acid (B1–B3) was used as the mesogenic arms, containing different terminal substituent X (B1: X= -OCH3, B2:X= -CH3, B3: X= -Cl). Their structures and mesomorphic properties were investigated by Fourier-transform infrared spectroscopy, nuclear magnetic resonance hydrogen spectrometer, differential scanning calorimetry, polarised optical microscopy and X-ray diffraction, respectively. The mesogenic B1–B3 displayed smectic B phase. The multi-arm LC D1 displayed cholesteric, while D2 and D3 exhibited nematic phase. The formation of cholesteric phase of D1 was affected by both the chiral core – the bulky cholic acid and the polarity of the terminal substituent of the mesogenic arm. That D1 displayed cholesteric phase but D2–D3 did not indicated that the stronger polarity of the terminal group OCH3 of D1 played an important part in stabilising the cholesteric phase. The multi-arm LCs D1–D3 all showed ultraviolet activity. The wavelength of maximum absorption of D1–D3 was affected by the terminal substituent of the mesogenic arm.  相似文献   

2.
Six three-arm star-shaped liquid crystals (LCs) based on chenodeoxycholic acid (CDCA), termed as G-BH, G-YD, G-FD, G-DJ, G-DZ and G-BX, respectively, have been synthesised. CDCA was used as the chiral core and the nematic side arm, 6-(4-(ethylbenzoyloxy) phenoxy)-6-oxohexanoic acid, was chosen to be introduced into the two hydroxyl of CDCA to synthesise cholesteric LC (CDCA2EA) and different structures were introduced into the carboxyl group of CDCA to prepare the three-arm star-shaped LCs. Chemical structures and LC properties of the six three-arm LCs were characterised by FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and polarised optical microscopy. G-BH and G-DJ displayed cholesteric phase with a long helical pitch; G-BX displayed nematic phase; and G-YD, G-FD and G-DZ displayed cholesteric phase on heating and on cooling. These results indicated that not only the chiral core CDCA but also the structures of the side arms played an important role in inducing the cholesteric phase of the CDCA-derived LCs. G-DZ displayed selective reflection, a wider ?λ and red shift on cooling.  相似文献   

3.
The mesomorphic, thermoptic and glass-forming properties of 4-[6-((cholesteryloxy) carbonyl)oxy hexyloxy] benzoic acid (Ch-BA) have been investigated as a novel supramolecular hydrogen-bonded cholesteric mesogen. Fourier transform infrared and 1H nuclear magnetic resonance studies have confirmed the chemical structure and the hydrogen-bond formation between the mesogens. According to polarising optical microscope observations, the compound exhibited smectic and chiral nematic phases. Differential scanning calorimetry indicated an unexpected glass transition (T g) around 32°C and a liquid crystalline region between 32 and 122°C, in which the cholesteric phase appeared at 80°C. As a result of the glass formation, samples of Ch-BA which were rapidly cooled below the T g were found to preserve the long-range ordering of the liquid crystalline state and retained the iridescent colours of the cholesteric phase. These results led to the conclusion that the formation of identical dimers by intermolecular hydrogen-bonding of the terminal carboxylic acids accompanying the lateral packing of the rigid cores, built a trimeric arrangement and this was responsible for the macromolecular behaviour of Ch-BA, despite its relatively simple structure and low molecular weight.  相似文献   

4.
ABSTRACT

New liquid crystals categorised as cholesteryl dimers have been successfully synthesised through the reaction between cholesteryl 4-(prop-2-ynyloxy)benzoate moieties with n-azido(cholesteryloxy-carbonyl)alkane. All the dimers display enantiotropic mesophases. Whilst the odd-numbered dimers exhibit chiral nematic (N*), twisted grain boundary (TGB) and chiral smectic C (SmC*) phases, the even-numbered members from the same series show chiral smectic A and C. A detailed inspection on mesophase reveals that the chiral centres and the bent conformation of the odd-numbered members are essential for the induction of TGB phase. However, upon decreasing the temperature, the ratio of the transition temperatures (TSmC*-SmA*/TSmA*-I) is found to be 0.95, which indicate the second order transition according to the McMillan’s molecular theory. In addition, the X-ray diffraction study supports the presence of the smectic A phase on the even members rather than the N* by the appearance of the Bragg diffraction peaks at 190°C. A comparison study with the other analogues in which the cholesterol entity is substituted by azobenzene or biphenyl tails has been carried out to assess the relationship between the molecular structure and mesomorphic behaviour.  相似文献   

5.
ABSTRACT

A series of symmetric liquid crystal (LC) dimers with the same chiral core (S)-1-phenylethane-1,2-diol ((S)-PE) have been synthesised, termed TBDA-(S)-PE, 3F3B-(S)-PE, 3F2B-(S)-PE, 1F3B-(S)-PE, 1F2B-(S)-PE, respectively. Chemical structures and LC properties of the five symmetric LC dimers were characterised by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance hydrogen spectrometer (1H NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and polarised optical microscopy (POM). TBDA-(S)-PE displayed enantiotropic chiral smectic A (SmA*) phase while 3F3B-(S)-PE, 3F2B-(S)-PE, 1F2B-(S)-PE all displayed enantiotropic chiral nematic (N*) phase and 1F3B-(S)-PE displayed monotropic N* phase. The results indicated that the removal of the flexible spacers between the rigid mesogenic arm and the chiral core facilitated the formation of the N* phase. When the rigid mesogenic units are connected to the chiral core directly, the structure of the terminal fluorine group and the rigidity of the mesogenic unit played certain influence on the thermal properties of the LC dimers, but did not change the type of mesomorphic phase. Compared to 3F3B-(S)-PE and 1F3B-(S)-PE, 3F2B-(S)-PE and 1F2B-(S)-PE displayed wider LC ranges, respectively, suggesting molecular regularity had greater influence on LC-isotropic (I) transition temperature.  相似文献   

6.
To study structure–mesomorphism relationships of the monomers and polymers based on menthol, four new chiral monomers ( M1 – M4 ) and the corresponding homopolymers ( P1 – P4 ) with menthyl group were synthesized. Their chemical structures, formula, phase behavior, and thermal stability were characterized by FTIR, 1H NMR, 13C NMR, elemental analyses, differential scanning calorimetry, polarizing optical microscopy, X‐ray diffraction, and thermogravimetric analysis. The selective reflection of light was investigated with ultraviolet/visible spectrometer. The influence of the mesogenic core rigidity, spacer length, and menthyl steric effect on the mesomorphism of M1 – M4 and P1 – P4 was examined. By inserting a flexible spacer between the mesogenic core and the terminal menthyl groups, four target monomers and polymers could form the expected mesophase. Moreover, their melting temperature (Tm), glass transition temperature (Tg), clearing temperature (Ti), and mesophase range (ΔT) increased with increasing the mesogenic core rigidity; whereas the Tm and Tg decreased, Ti and ΔT increased with an increase of the spacer length. M1 and M2 showed monotropic and enantiotropic cholesteric phase, respectively, whereas M3 and M4 all revealed chiral smectic C (SmC*), cholesteric and cubic blue phases. In addition, with increasing temperature, the selective reflection of light shifted to the long wavelength region at the SmC* phase range and to the short wavelength region at the cholesteric range, respectively. P1 and P2 only showed a smectic A (SmA) phase, whereas P3 and P4 exhibited the SmC* and SmA phases. All the obtained polymers had very good thermal stability. © 2012 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym Chem, 2012  相似文献   

7.
A series of new cholesteric side-chain liquid crystalline polymers were prepared containing cholesteric monomer and nonmesogenic chiral monomer. All polymers were synthesized by graft polymerization using polymethylhydrosiloxane as backbone. The mesomorphic properties were investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction measurements, and temperature-changing solidistic optical rotation. The chemical structures of the monomers and polymers obtained were confirmed by Fourier transform infrared and proton nuclear magnetic resonance spectra. M1 showed cholesteric phase during the heating and the cooling cycle. Polymer P1 were chiral smectic A phase, whereas P2–P7 were cholesteric phase. Experimental results demonstrated that nonmesogetic chiral moity offered the possibility of application because of its lower glass-transition temperature, and the glass-transition temperatures and isotropization temperatures reduced, and the ranges of the mesophase temperature changed abruptly at first and then smoothly with increasing the content of chiral agent.  相似文献   

8.
The synthesis of four new chiral mesogenic monomers (M1–M4) and side chain ferroelectric liquid crystalline polymers containing (2S, 3S)-2-chloro-3-methylpentanoate is described. The chemical structures and phase behaviour of the monomers and polymers obtained in this study were characterised by Fourier transform infrared, proton nuclear magnetic resonance, polarising optical microscopy, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. The selective reflection of light was investigated with ultraviolet/visible (UV/Vis). Their structure–mesomorphism relationships were discussed. M1 and P1 all showed a chiral smectic C (SmC*) phase. M2 and M3 revealed a SmC* phase and cholesteric phase, while their corresponding polymers P2 and P3 revealed a SmC* phase and smectic A (SmA) phase. M4 only exhibited a cholesteric phase, whereas the corresponding polymers P4 showed a SmA phase. Moreover, the selective reflection of light shifted to the long-wavelength region at the SmC* phase range and to the short-wavelength region at the cholesteric range with increasing temperature, respectively. The results seemed to demonstrate that the tendency towards melting temperature (Tm), glass transition temperature (Tg), isotropic temperature (Ti) and mesophase range for the monomers and polymers increased by increasing the mesogenic core rigidity or the number of phenyl ring. The polymerisation effect could lead to higher liquid crystalline to isotropic phase transition temperature, wider mesophase range and more ordered smectic phase formed. In addition, all the obtained polymers had a very good thermal stability and the corresponding Td increased by increasing the number of phenyl ring.  相似文献   

9.
The synthesis is described of four new chiral liquid crystalline monomers (M2–M5 ) and their corresponding side‐chain homopolysiloxanes (P2–P5 ) containing menthyl groups. Chemical structures were characterised using FT‐IR or 1H NMR spectra, and specific optical rotations were evaluated with a polarimeter. The phase behaviour and mesomorphic properties of the new compounds were investigated by differential scanning calorimetry, thermogravimetric analysis, polarising optical microscopy, UV/visible/NIR spectrocopy and X‐ray diffraction. The monomers and homopolymers with more aryl segments showed noticeably lower specific optical rotation value. The monomers M2–M5 formed a cholesteric or blue phase when a flexible spacer was inserted between the rigid mesogenic core and the terminal menthyl groups by reducing the steric effect. M2–M5 revealed enantiotropic cholesteric phase. Moreover, M2 also exhibited a monotropic smectic A (SmA) phase, and M4 also exhibited a cubic blue phase on cooling. The selective reflection of light shifted to the long wavelength region with increasing rigidity of the mesogenic core for M2–M5 . P2–P5 exhibited SmA phases, and the mesogenic moieties were ordered in smectic orientation with their centres of gravity in planes. Melting or glass transition temperature and the clearing temperature increased, and the mesophase temperature range widened with increasing rigidity of the mesogenic core.  相似文献   

10.
We have synthesised and studied lactic acid derivatives based on chlorine substituted molecular core, which is created from two biphenyls linked by an ester, and terminated with one or two lactic units in a chiral chain. The compounds with one lactate group exhibit cholesteric phase with rather short helix pitch (200 nm) in a broad temperature range. On contrary, compound with two lactate units reveals a stable TGBA phase, with transition temperatures substantially lower than those for one-lactate derivatives. We have studied mesophase behaviour and electro-optical properties, mostly based on the texture observation in polarising microscope. Additionally, we have used AFM and x-ray techniques to confirm mesophase identification and establish structural properties.  相似文献   

11.
The synthesis of new chiral monomers (M1 ?M3 ) based on menthol and the corresponding polyacrylates (P1 ?P3 ) is described. The chemical structures, formula and phase behaviour of the obtained monomers and polymers were characterised with FT-IR, 1H-NMR, elemental analyses, differential scanning calorimetry (DSC), polarising optical microscopy (POM) and X-ray diffraction (XRD). The effect of the mesogenic core rigidity, spacer length and menthyl steric effect on the phase behaviour of M1 ?M3 and P1 ?P3 is discussed. The expected mesophase of the compounds based on menthol can be obtained by inserting a flexible spacer between the mesogenic core and the terminal groups. For the chiral monomers and polyacrylates, their corresponding melting temperature (T m), glass transition temperature (T g) and clearing temperature (T i) increased with an increase of the mesogenic core rigidity; while the T m, T g and T i decreased with increasing the spacer length. M1 and P1 showed no mesophase, while M2 and M3 all revealed a SmC* and cholesteric phases. P2 and P3 only showed a cholesteric phase.  相似文献   

12.
ABSTRACT

A series of non-symmetric liquid crystal (LC) dimers with the same chiral core 1,2-propanediol (PD) have been synthesised, termed as ABBA-PD-TFBA, PBBA-PD-TFBA, ABA-PD-TFBA, PBA-PD-TFBA and AA-PD-TFBA, respectively, in which one of the two mesogenic groups, the fluorinated mesogenic unit, was kept fix and the other arm was different. The intermediate compounds and LC dimers were characterised by FTIR, 1H NMR, differential scanning calorimetry, thermogravimetric analysis, polarised optical microscopy and X-ray diffractometer (XRD). The results of the measurements indicated that ABBA-PD-TFBA, PBBA-PD-TFBA and ABA-PD-TFBA displayed optical activity and enantiotropic chiral nematic phase, and PBA-PD-TFBA was an enantiotropic nematic LC while AA-PD-TFBA was a monotropic LC, displaying both nematic phase and smectic A phase on cooling. The results indicated that PD was able to induce the chiral nematic phase, nevertheless, the rigidity of the mesogenic arm, the flexibility of the terminal group and even the type of the terminal chemical bond played an important effect on the thermal properties of the dimers, and even on the formation of the chiral nematic phase. It is also worth noting that C=C at the terminal helped to stabilise the LC phase.  相似文献   

13.
In this work we prepared a nematic monomer (4′‐allyloxybiphenyl 4′‐ethoxybenzoate, M1 ), a chiral crosslinking agent (isosorbide 4‐allyloxybenzoyl bisate, M2 ) and a series of new side chain cholesteric liquid crystalline elastomers derived from M1 and M2 . The chemical structures of the monomers and polymers were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy and X‐ray diffraction. The effect of the content of the crosslinking unit on phase behaviour of the elastomers is discussed. Polymer P1 showed a nematic phase, P2 P7 showed a cholesteric phase; P6 formed a blue Grandjean texture over a broad temperature range 145–209.6°C, with no changed on the cooling. Polymers P4 P7 , with more than 6?mol?% of chiral crosslinking agent, gave rise to selective reflection. Elastomers containing less than 15?mol?% of the crosslinking units displayed elasticity, reversible phase transition with wide mesophase temperature ranges, and high thermal stability. Experimental results demonstrated that, with increasing content of crosslinking agent, the glass transition temperatures first fell and then increased; the isotropization temperatures and mesophase temperature ranges decreased.  相似文献   

14.
A series of new chiral side-chain liquid crystalline polymers (P1–P7) have been synthesized with poly(methylhydrogeno)siloxane, two chiral liquid crystalline monomers, cholesteryl-4-allyloxybenzoate (M1) and cholesteryl 4-(10-undecylen-1-yloxy) benzoate (M2), and a nematic liquid crystalline monomer, 4-(trifluoromethyl)phenyl 4-(undec-10-enoyloxy)benzoate (M3). The chemical structures and liquid crystalline properties of the synthesized polymers have been investigated by FTIR, 1H-NMR, differential scanning calorimetry (DSC), polarizing optical microscopy (POM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). All chiral polymers show wide mesophase temperature ranges and a high thermal stability with decomposition temperatures (T d) at 5 % weight loss greater than 300 °C. P1–P4 display a single cholesteric phase, but P5–P7 containing more fluorinated units show a smectic A (SA) phase besides a cholesteric phase. The optical properties of the polymers have been characterized by circular polarization spectra and optical rotation analysis. The cholesteric polymers P3 and P4 exhibit different colors at room temperature, and the color can remain over 24 months. The maximum reflection bands of polymers P1–P4 shift to long wavelength with increasing the content of M3 in the polymer systems. For P5–P7, the reflection wavelengths change sharply around the temperature of the SA–Ch phase transition. The specific rotation value of P2 smoothly decreases from ?8.2° to ?0.29° when it is heated, but the specific rotation value of polymer P7 changes from negative value to positive value on heating cycle. The optical properties of the polymers offer tremendous potential for various optical applications.  相似文献   

15.
含薄荷基的手性液晶单体的合成、结构与性能研究   总被引:1,自引:0,他引:1  
胡建设  刘聪  孟庆宝  王翔 《化学学报》2009,67(14):1668-1674
合成了五种新型含薄荷基的手性单体(M1~M5), 它们的结构、纯度及旋光性质通过了1H NMR, FT-IR、元素分析仪及旋光仪等手段的表征, 采用DSC, POM, UV/Vis/NIR等研究了单体的介晶性能、相行为及选择反射性能. 结果表明: 单体的比旋光度值随苯环数目的增加而降低, 通过在薄荷基与液晶核之间引入柔性间隔基元, 实现了含薄荷基单体具有液晶性能的目的. 除M1外, 其余四种单体均呈现手性近晶C (SC*)相和胆甾(Ch)相, 此外M5还出现了蓝相织构. M2~M4只在SC*相区能观察到选择反射现象, 而M5在SC*相区和Ch相区均出现明显的选择反射现象, 且随温度的升高, SC*相区的反射波长发生“红移”, 而Ch相区的反射波长则发生“蓝移”. 随着液晶核刚性的增加, 对应单体的熔点和清亮点增大, 液晶相范围变宽. 液晶核中的酯基桥键与组合方式也对单体的熔点和清亮点具有一定的影响.  相似文献   

16.
Chiral non-symmetric dimeric liquid crystals consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core, interconnected through n-butyl (C4) or n-pentyl (C5) parity alkylene spacers, have been synthesized and investigated for their liquid crystalline properties. All the dimers exhibit enantiotropic mesophases. The first member of the dimers having the C4 central spacer exhibit only the chiral nematic (N*) mesophase, while the higher homologues also show smectic A (SmA) and twist grain boundary (TGB) mesophases. The dimers of the other series containing the C5 central spacer also have stable SmA, TGB and N* mesophases, except for the first which does not show the TGB phase. Both series of compounds show a weak odd-even effect with terminal alkyl chain substitution, while the spacer length has a marked influence on the phase transition temperatures.  相似文献   

17.
ABSTRACT

Two series of novel side-chain liquid crystal (LC) polysiloxanes grafted with chiral liquid crystalline dimers containing cholesteryl mesogens were synthesised. The chemical structure and LC properties of comonomers and polymers were characterised by FTIR, 1H-NMR, DSC, TGA, POM and XRD. M1 and M2 were chiral nematic (N*) dimers, and M3 was an achiral LC monomer displaying nematic mesophase in a narrow mesomorphic temperature range, while the copolymers exhibited N* mesophase whose mesomorphic temperature ranges were much wider than those of the comonomers. Moreover, the glass transition temperatures and isotropization temperatures of the polymers all decreased with decreasing the dimer components. Reflection spectra showed that Pa series tend to attain wide-band selective reflection at long wavelengths, while Pb series were more potential at short wavelengths with narrow bandwidths. Decreasing the dimer components led the wavelength of the selective reflection to blue shift, which was an abnormal phenomenon in chiral mixture system.  相似文献   

18.
A series of novel thermotropic main-chain chiral liquid–crystalline random copolyesters consisting of spacers of two different types—chiral and achiral—was synthesized. Polyesters (BmTa) with tartaric acid as the chiral spacer (Ta), aliphatic diols (with ‘m’ = 2–10 methylene groups) as the achiral spacers, and 4,4′-dihydroxy biphenyl (B) as the mesogen were synthesized via condensation polymerization in solution after duly protecting the 2,3-dihydroxy groups of tartaric acid by acetylation. The copolymers were characterized by Fourier transform infrared spectroscopy, 1H and 13C NMR spectra, gel permeation chromatography, and thermogravimetric analysis. Transition temperatures for phase changes recorded by DSC were corroborated with the textures observed by a hot-stage optical polarizing microscope. The wide-angle X-ray diffraction (WAXD) profiles indicated a SmE phase at room temperature. The lower angle region at 2θ = 0.5–2.45 covered by WAXD indicated a layer of thickness of 161 Å, less than the molecular length for B0Ta. The [αD] values were recorded on a digital polarimeter. The birefringence was lost at higher mesophase temperatures in lower members with m < 5, a behavior found in certain chiral systems, and the higher members with m > 5 showed a lesser number of phase transitions. On cooling, the polyesters produced a texture with the formation of transition bars. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1743–1752, 2001  相似文献   

19.
Addition of a chiralic eight-membered ring derivative of 1, 1′-dinaphthyl (I) to a nematic mesophase produces an optical rotatory power Φ which exceeds the optical rotation of the solute I by a factor of several orders of magnitude. The temperature dependence Φ (T) as well as other optical properties are characteristic of cholesteric liquid crystals. From this, evidence has been derived that non-mesomorphic chiral molecules transform a nematic into a cholesteric mesophase. The screw-sense of the helical arrangement depends on the chirality of the molecules added.  相似文献   

20.
ABSTRACT

Liquid-crystalline dimers and bimesogens have attracted much attention due to their propensity to exhibit the spontaneously chiral twist-bend mesophase (NTB), most often by dimers with methylene spacers. Despite their relative ease of synthesis, the number of ether-linked twist-bend materials significantly lags behind those of methylene-linked compounds. In this work, we have prepared and studied a range of ether-linked bimesogens homologous in structure to the FFO9OCB; as with methylene-linked systems, it appears that it is molecular topology and the gross molecular shape that are the primary drivers for the formation of this phase of matter. Dimers and bimesogens are well studied within the context of the twist-bend phase; however, present understanding of this mesophase in oligomeric systems lags far behind. We report our recent efforts to prepare further examples of oligomeric twist-bend nematogens, including further examples of our ‘n+1’ methodology, which may allow the synthesis of high-purity, monodisperse materials of any given length to be prepared. We have observed that there is a tendency for these materials to exhibit highly ordered soft-crystalline mesophases as opposed to the twist-bend phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号