首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The smectic layer spacing of two homologous series of ferroelectric liquid crystal compounds was characterized by small-angle x-ray diffraction and different degrees of smectic layer shrinkage on cooling from the SmA* into the SmC* phase were observed. The smectic A*-smectic C* phase transition was further studied by measuring the thermal and electric field effects on the optical tilt angle and the electric polarization. With decreasing length of the alkyl terminal chain the phase transition changes from tricritical exhibiting high layer shrinkage to a pure second-order transition with almost no layer shrinkage. This is explained by the increased one-dimensional translational order of the smectic layers, which seems to promote the "de Vries"-type [Mol. Cryst. Liq. Cryst. 41, 27 (1977)] smectic A*-C* phase transition with no or little layer shrinkage.  相似文献   

2.
We have investigated the orthoconic antiferroelectric liquid crystal mixture W107 by means of optical, X-ray and calorimetry measurements in order to assess the origin of the unusally high tilt angle between the optic axis and the smectic layer normal in this material. The optical birefringence increases strongly below the transition to the tilted phases, showing that the onset of tilt is coupled with a considerable increase in orientational order. The layer spacing in the smectic A* (SmA*) phase is notably smaller than the extended length of the molecules constituting the mixture, and the shrinkage in smectic C* (SmC*) and smectic Ca* (SmCa*) is much less than the optical tilt angle would predict. These observations indicate that the tilting transition in W107 to a large extent follows the asymmetric de Vries diffuse cone model. The molecules are on average considerably tilted with respect to the layer normal already in the SmA* phase but the tilting directions are there randomly distributed, giving the phase its uniaxial characteristics. At the transition to the SmC* phase, the distribution is biased such that the molecular tilt already present in SmA* now gives a contribution to the macroscopic tilt angle. In addition, there is a certain increase of the average tilt angle, leading to a slightly smaller layer thickness in the tilted phases. Analysis of the wide angle scattering data show that the molecular tilt in SmCa* is about 20° larger than in SmA*. The large optical tilt (45°) in the SmCa* phase thus results from a combination of an increased average molecule tilt and a biasing of tilt direction fluctuations.  相似文献   

3.
We have investigated the orthoconic antiferroelectric liquid crystal mixture W107 by means of optical, X-ray and calorimetry measurements in order to assess the origin of the unusally high tilt angle between the optic axis and the smectic layer normal in this material. The optical birefringence increases strongly below the transition to the tilted phases, showing that the onset of tilt is coupled with a considerable increase in orientational order. The layer spacing in the smectic A* (SmA*) phase is notably smaller than the extended length of the molecules constituting the mixture, and the shrinkage in smectic C* (SmC*) and smectic Ca* (SmCa*) is much less than the optical tilt angle would predict. These observations indicate that the tilting transition in W107 to a large extent follows the asymmetric de Vries diffuse cone model. The molecules are on average considerably tilted with respect to the layer normal already in the SmA* phase but the tilting directions are there randomly distributed, giving the phase its uniaxial characteristics. At the transition to the SmC* phase, the distribution is biased such that the molecular tilt already present in SmA* now gives a contribution to the macroscopic tilt angle. In addition, there is a certain increase of the average tilt angle, leading to a slightly smaller layer thickness in the tilted phases. Analysis of the wide angle scattering data show that the molecular tilt in SmCa* is about 20° larger than in SmA*. The large optical tilt (45°) in the SmCa* phase thus results from a combination of an increased average molecule tilt and a biasing of tilt direction fluctuations.  相似文献   

4.
We report preliminary results of optical and small angle X-ray scattering (SAXS) experiments on the smectic A*-smectic C* transition in two ferroelectric liquid crystalline polysiloxanes. Although the optical tilt angle in the SmC* phases reaches values up to 30°, temperature-dependent SAXS measurements clearly reveal that the smectic layer spacing is basically conserved during the A*-C* transition as well as in the subsequent C* phase. Connected with the A*-C* transition we further observed a significant increase in birefringence, hence reflecting an increase of orientational order. The practical absence of layer shrinkage and the enhanced orientational ordering are consistent with the de Vries diffuse cone model of smectic A-smectic C transitions.  相似文献   

5.
This paper compares smectic phases formed from LC-homo- and LC-co-polysiloxanes. In the homopolysiloxane, each repeating unit of the polymer chain is substituted with a mesogen, whereas in the copolysiloxanes mesogenic repeating units are separated by dimethylsiloxane units. Despite a rather similiar phase sequence of the homo- and co-polysiloxanes—higher ordered smectic, smectic C* (SmC*), smectic A (SmA) and isotropic—the nature of their phases differs strongly. For the copolymers the phase transition SmC* to SmA is second order and of the 'de Vries' type with a very small thickness change of the smectic layers. Inside the SmA phase, however, the smectic thickness decreases strongly on approaching the isotropic phase. For the homopolymer the phase transition SmC* to SmA is first order with a significant thickness change, indicating that this phase is not of the 'de Vries' type. This difference in the nature of the smectic phases is probably a consequence of microphase separation in the copolymer, which facilitates a loss of the tilt angle correlation between different smectic layers. This has consequences for the mechanical properties of LC-elastomers formed from homo- and co-polymers. For the elastomers from homopolymers the smectic layer compression seems to be rather high, while it seems to be rather small for the copolymers.  相似文献   

6.
An external electric field applied across a planar-aligned cell in Smectic A* phase of de Vries smectic liquid crystal induces director redistribution over a cone, resulting in a substantial increase in the birefringence and the apparent optical tilt angle. Such an electro-optic response is modelled by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013)], who modified their previous hollow cone with a diffuse cone model by introducing the molecular distribution function limited over a range of tilt angles, that lie in between θmin and θmax. The limits in these two tilt angles are assumed to be temperature independent though the tilt angle in between the two values can be temperature dependent. However, the high resolution measurements of birefringence and the layer thickness indicate the presence of temperature dependent diffuse cone angle in SmA* phase.. In the proposed model, we replace θmin by θT, a temperature dependent fitting parameter and the change shows that a better fit of the experimental data to the model is obtained. We determine the temperature dependence of θmin and show that this angle increases as SmA* to SmC* phase transition temperature is approached.  相似文献   

7.
The phase behaviour of a commercial calamitic ferroelectric liquid crystal mixture, doped with different mesogenic and non-mesogenic bent-core molecules was investigated through polarising microscopy, optical measurements and quenched growth. A twisted smectic structure, similar but not equivalent to a twist grain boundary (TGB) phase, and absent in the neat FLC mixture, was verified. The twisted smectic state can only be observed on cooling and its stability depends on the rate of temperature decrease, which indicates a kinetically governed behaviour. Further, the growth dynamics of the low temperature uniform SmA* bookshelf structure is dominated by viscosity instead of free energy density, as would be expected for a true thermodynamic phase transition. The investigations signify the chiral induction capability of achiral, bent-core dopant molecules and we believe that the observed behaviour represents the onset of TGB formation at very large pitch. It can thus give valuable information for the fundamental physical understanding of twist grain boundary phase formation.  相似文献   

8.
《Liquid crystals》2007,34(1):87-94
Polarized Fourier transform infrared (FTIR) spectroscopy is used to study the strain-induced compression of molecular layers in oriented smectic liquid crystal elastomer films. A reversible change of the smectic layer thickness in SmA and SmC* films in response to external strain was revealed earlier by optical reflectometry and X-ray measurements. However, these methods cannot probe the mechanism of layer compression on a molecular level. Polarized FTIR spectra show that the induced mesogenic tilt, one of the possible mechanisms, is too small to provide the dominating contribution to the layer shrinkage. The FTIR absorbance spectra of stretched samples are also evidence that there are no significant changes of the order parameter. Apparently, layer compression is achieved by a certain interpenetration of neighbouring layers, and/or compression of the interstitial backbone and spacer layers.  相似文献   

9.
P. Archer 《Liquid crystals》2013,40(3):257-265
The phase behaviour of a commercial calamitic ferroelectric liquid crystal mixture, doped with different mesogenic and non‐mesogenic bent‐core molecules was investigated through polarising microscopy, optical measurements and quenched growth. A twisted smectic structure, similar but not equivalent to a twist grain boundary (TGB) phase, and absent in the neat FLC mixture, was verified. The twisted smectic state can only be observed on cooling and its stability depends on the rate of temperature decrease, which indicates a kinetically governed behaviour. Further, the growth dynamics of the low temperature uniform SmA* bookshelf structure is dominated by viscosity instead of free energy density, as would be expected for a true thermodynamic phase transition. The investigations signify the chiral induction capability of achiral, bent‐core dopant molecules and we believe that the observed behaviour represents the onset of TGB formation at very large pitch. It can thus give valuable information for the fundamental physical understanding of twist grain boundary phase formation.  相似文献   

10.
A new series of materials with a chiral fragment derived from lactic acid and a methoxy group as lateral substituent in different positions of the molecular core was synthesised and investigated. Derivatives with ester or ether linkages of the non‐chiral chain were also studied. Depending on the molecular structure, cholesteric, twist grain boundary smectic A (TGBA*), chiral smectic A (SmA*) or chiral smectic C (SmC*) phases were detected. In derivatives with the ester linkage and a methoxy group at the nearest and the next nearest phenyl ring to the non‐chiral chain these phases completely disappear. On the other hand, a methoxy group on the phenyl ring close to the chiral chain provides a compound with low layer shrinkage at the SmA*–SmC* phase transition (“de Vries” behaviour). The temperature dependence of the spontaneous polarisation, the tilt angle, the layer spacing as well as the complex permittivity were studied and the results discussed in terms of molecular structure.  相似文献   

11.
The light switching characteristics induced by a thermal smectic A (SmA) ? chiral nematic (N*) phase transition were studied for homeotropically aligned [smectic A liquid crystal (SmA-LC)/nematic liquid crystal (N-LC)/chiral dopant] and [side chain type smectic A liquid crystalline polymer (SmA-LCP)/N-LC/chiral dopant] composites. A drastic change from a transparent SmA phase to a light-scattering N* phase occurred in both composites upon heating. In the case of the heat-induced N* phase for the (SmA-LC/N-LC/chiral dopant) composite, the N* phase exhibited weak light scattering due to formation of a scroll texture. On the other hand, in the case of the heat-induced N* phase for the (SmA-LCP/N-LC/chiral dopant) composite, the N* phase showed strong light scattering due to formation of a focalconic texture. The existence of a SmA-LCP was responsible for a higher contrast ratio between the transparent SmA phase and the light scattering N* phase for the (SmA-LCP/ N-LC/chiral dopant) composite than for the (SA-LCN/N-LC/chiral dopant) composite.  相似文献   

12.
A detailed investigation has been reported of the electroclinic behaviour in the smectic A* phase of eleven mixtures made up of a commercial achiral smectic C host and strongly chiral alkoxybiphenyl-phenyl carboxylate dopants. A new technique was used to measure the induced tilt angle as a function of electric field and temperature. For all the mixtures, the electroclinic response followed a Curie-Weiss type temperature dependence for measurements performed well away from the smectic A* to smectic C* phase transition temperature. The strength of the electroclinic response was evaluated for each mixture by determining the temperature independent ratio k/a (i.e. the electroclinic coupling susceptibility, k divided by the susceptibility coefficient controlling the induced tilt, a). Analysis of the results showed that k/a of the mixtures was dependent on the type and position of the electronegative or polar substituents that affected the net dipole moment of the chiral dopants. In fact, the value of k/a was largest when fluorine was replaced by hydrogen in the lateral position and at the chiral centre. Furthermore, relatively short alkyl chains (e.g. C6H13) at the chiral centre were preferred to longer ones (e.g. C10H21) for a larger electroclinic response.  相似文献   

13.
《Liquid crystals》1999,26(9):1351-1357
The anticlinic smectic CA phase belongs to the class of tilted smectic phases with an azimuthal angle alternating from one direction (theta=0) to the other (theta=pi) in successive layers. It occurs in general at lower temperature than the uniformly tilted smectic C phase, but may be obtained directly from the untilted smectic A phase. We use the chiral nCTBB9* series synthesized in this laboratory, in order to obtain a phase transition as close as possible to second order, as revealed by DSC. We measure the temperature behaviour of the birefringence and of the optical rotatory power across the transition in order to characterize the tilt angle. We finally study the optical response to a periodic electric field which excites separately the smectic C* and C*A soft modes. The main conclusion is that the only order parameter governing the critica Al behaviour of the phase transition is the tilt angle theta, as we get common divergence of both soft modes at the same temperature. This confirms previous high resolution calorimetric studies by Ema et al. that saw in MHPOBC an initial mean-field second order phase transition when the tilt appears, followed by sharp first order restructuring transitions between the tilted subphases.  相似文献   

14.
The anticlinic smectic CA phase belongs to the class of tilted smectic phases with an azimuthal angle alternating from one direction (theta=0) to the other (theta=pi) in successive layers. It occurs in general at lower temperature than the uniformly tilted smectic C phase, but may be obtained directly from the untilted smectic A phase. We use the chiral nCTBB9* series synthesized in this laboratory, in order to obtain a phase transition as close as possible to second order, as revealed by DSC. We measure the temperature behaviour of the birefringence and of the optical rotatory power across the transition in order to characterize the tilt angle. We finally study the optical response to a periodic electric field which excites separately the smectic C* and C*A soft modes. The main conclusion is that the only order parameter governing the critica Al behaviour of the phase transition is the tilt angle theta, as we get common divergence of both soft modes at the same temperature. This confirms previous high resolution calorimetric studies by Ema et al. that saw in MHPOBC an initial mean-field second order phase transition when the tilt appears, followed by sharp first order restructuring transitions between the tilted subphases.  相似文献   

15.
Collective relaxation processes are completely undetectable in a ferroelectric liquid crystal confined in porous Anopore membranes, as a result of perfect orientation of the smectic layers perpendicular both to the long axis of the pores and the direction of the measuring electric field. In the ferroelectric liquid crystal – Anopore composite only one relaxation process, assigned to rotation of the molecule around the molecular short axis, appears throughout all smectic phases. The temperature dependence of the relaxation frequency and of the dielectric strength of this process also shows no irregularity at the point of polarization sign reversal. The temperature dependence of the relaxation frequency follows the Arrhenius law with an activation energy slightly higher in the ferroelectric SmC* phase. Analysis of the non‐linear changes of temperature dependence of the dielectric strength at the SmA–SmC* phase transition enables one to obtain the temperature dependence of the tilt angle of the molecules in the SmC* phase in the Anopore membrane. Dielectric measurements confirm the existence of the tilted smectic phase in Anopore cylindrical channels with no tilt anomaly at the point of polarization sign reversal.  相似文献   

16.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n -butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N * ) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC * ) mesophase. The metal complexes with n -butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N * phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C * phase of the two ligands.  相似文献   

17.
We report on wide-angle X-ray scattering measurements along the smectic-A to chiral ferroelectric smectic-C* phase transition of the liquid crystal SCE9 and its mixture with maghemite magnetic nanoparticles of typical dimension 20 nm. The temperature profiles of the tilt angle are fitted by an extended mean-field model. Neither pre-transitional order effects nor variations in the SmA layer thickness are observed, indicating a rather negligible influence of these nanoparticles upon the molecular orientation at the smectic-A to smectic-C* phase transition of SCE9. These results are very different from what was observed for smaller CdSe nanoparticles (3.5 nm) where both a dilation of the smectic layers in the SmA phase and a crossover behaviour for the smectic-A to smectic-C* transition away from tricriticality have been observed for analogous concentrations.  相似文献   

18.
《Liquid crystals》2012,39(15):2256-2268
ABSTRACT

Physical properties of the partially fluorinated compound 3F5FPhF, with hockey stick-like molecules, were studied by complementary methods. Apart from the already reported paraelectric SmA*, ferroelectric SmC* and antiferroelectric SmC*A phases, the presence of the smectic C*α subphase in the phase sequence was proved by differential scanning calorimetry, polarising optical microscopy, electro-optic and dielectric spectroscopy methods. The temperature dependence of the smectic layer thickness and correlation length of the lateral short-range order was determined by X-ray diffraction. Based on dielectric measurements three relaxation processes were revealed in the antiferroelectric SmC*A phase (two collective: PL, PH and one molecular: s-process), two collective ones (Goldstone and soft modes) were found both in the ferroelectric SmC* phase and SmC*α subphase while one relaxation process (soft mode) in the paraelectric SmA* phase. The results were compared with that obtained for other structurally similar compounds, and it was shown that even addition of one methylene group to the side chain influences much on the physical properties.  相似文献   

19.
《Liquid crystals》1997,23(5):667-676
A transition between the transparent smectic A (SmA) phase and the light scattering chiral nematic (N*) phase was realized based on the thermally induced SmA N* phase transition for the homeotropically aligned \[liquid crystalline polymer (LCP)/liquid crystal (LC)/chiral dopant] ternary composite system. The LCP played an important role in increasing the intensity of the light scattering of the heat-induced N* phase. Meanwhile the effects of the composition of the ternary composite system on the thermo-optical characteristics were also investigated.  相似文献   

20.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n-butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N*) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC*) mesophase. The metal complexes with n-butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N* phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C* phase of the two ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号