首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 777 毫秒
1.
Hawking radiation from cosmological horizon and event horizon of the Reissner-Nordstrom de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively.  相似文献   

2.
We are going to prove that the Monopole and the Coulomb fields are duals within the unifying structure provided by the Reissner-Nordstrom spacetime. This is accomplished when noticing that in order to produce the tetrad that locally and covariantly diagonalizes the stress-energy tensor, both the Monopole and the Coulomb fields are necessary in the construction. Without any of them it would be impossible to express the tetrad vectors that locally and covariantly diagonalize the stress-energy tensor. Then, both electromagnetic fields are an integral part of the same structure, the Reissner-Nordstrom geometry.  相似文献   

3.
Considering the fractal structure of space-time, the scale relativity theory in the topological dimension DT=2 is built. In such a conjecture, the geodesics of this space-time imply the hydrodynamic model of the quantum mechanics. Subsequently, the gauge gravitational field on a fractal space-time is given. Then, the gauge group, the gauge-covariant derivative, the strength tensor of the gauge field, the gauge-invariant Lagrangean, the field equations of the gauge potentials and the gauge energy-momentum tensor are determined. Finally, using this model, a Reissner-Nordström type metric is obtained.  相似文献   

4.
WUNing 《理论物理通讯》2004,42(4):543-552
Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein‘s field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.  相似文献   

5.
In a case of spherically symtric and static field, exterior solutions of a charged mass point for the nine-parameter R+R2 gravitational theories are investigated. We obtain results as follows: in the case of coupling constant (zP-2r+s)=0, solution without torsion is the Reissner-Nordstrom metric; otherwise there is no solution with vanishing torsion.  相似文献   

6.
Spatially homogeneous perfect fluid spacetimes are studied from a point of view which emphasizes the spatial geometry and the action of that subgroup of the spatial gauge group of the three-plus-one formulation of general relativity which is compatible with the spatial homogeneity. The specializations of the dynamics which correspond to the existence of additional spacetime symmetries are classified. An unconstrained set of gravitational and fluid variables is obtained by elimination of the gravitational constraints using an approach which obtains the gravitational evolution equations from a suitably modified Lagrangian/Hamiltonian formalism. A slightly different choice of variables is then described which allows one to take full advantage of the spatial gauge group and of the 1-parameter group of scale transformations of the unit of length.  相似文献   

7.
WU Ning 《理论物理通讯》2005,43(5):957-960
A cosmological model based on gauge theory of gravity is proposed in this paper. Combining cosmological principle and field equation of gravitational gauge field, dynamical equations of the scale factor R(t) of our universe can be obtained. This set of equations has three different solutions. A prediction of the present model is that, if the energy density of the universe is not zero and the universe is expanding, the universe must be space-flat, the total energy density must be the critical density ρc of the universe. For space-flat case, this model gives the same solution as that of the Friedmann model. In other words, though they have different dynamics of gravitational interactions, general relativity and gauge theory of gravity give the same cosmological model.  相似文献   

8.
The de Sitter special relativity on the Beltrami-de Sitter-spacetime and Snyder's model in the momentum space can be combined together with an IR-UV duality to get the complete Yang model at both classical and quantum levels, which are related by the proposed Killing quantization. It is actually a special relativity based on the principle of relativity of three universal constants (c, ρp, R).  相似文献   

9.
I discuss the modification of Einstein's Theory of General Relativity based on a periodic functional approach. In this new approach, a corrected periodic gravitational coupling constant arises and plays the role of periodic damping term acting on the theory. It is found that it is achievable to have an oscillating universe dominated by dark energy and expanding aceeleratedly in time.  相似文献   

10.
The solutions of the Schrodinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential have been presented using the parametric Nikiforov-Uvarov method. The bound state energy eigen values and the corresponding un-normalized eigen functions are obtained in terms of Laguerre polynomials. Also a special case of the potential has been considered and its energy eigen values are obtained.  相似文献   

11.
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton‘s theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein‘s general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.  相似文献   

12.
WU Ning 《理论物理通讯》2002,38(2):151-156
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussed in this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum, it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantum theory.  相似文献   

13.
Numerical simulation of antennae is a topic in computational electromagnetism, which is concerned with the numerical study of Maxwell equations. By discrete exterior calculus and the lattice gauge theory with coefficient R, we obtain the Bianchi identity on prism lattice. By defining an inner product of discrete differential forms, we derive the source equation and continuity equation. Those equations compose the discrete Maxwell equations in vacuum case on discrete manifold, which are implemented on Java development platform to simulate the Gaussian pulse radiation on antennaes.  相似文献   

14.
By solving the coupled SU(5) Einstein-Yang-Mills-Higgs equations, we obtain the exact Reissner-Nordstrom type gravitational field of a family of spherically symmetric SU(5) dyons with magnetic charge 1/2e.  相似文献   

15.
It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.  相似文献   

16.
We investigate the decomposition of noncommutative gauge potential Ai, and find that it has inner structure, namely, Ai can be decomposed in two parts, bi and αi, where bi satisfies gauge transformations while αi satisfies adjoint transformations, so dose the Seiberg-Witten mapping of noncommutative U(1) gauge potential. By means of Seiberg-Witten mapping, we construct a mapping of unit vector field between noncommutative space and ordinary space, and find the noncommutative U(1) gauge potential and its gauge field tensor can be expressed in terms of the unit vector field. When the unit vector field has no singularity point, noncommutative gauge potential and gauge field tensor will equal ordinary gauge potential and gauge field tensor  相似文献   

17.
Using the effective Hamiltonian method, we analyze the B0-B0 mixing in the extension of the standard model (SM) where baryon number and lepton number are local gauge symmetries. The numerical results indicate the correction from the extra particles to the mass difference ArnB is significant. There is a 60% enhancement compared to the SM prediction for AraB at most, which agrees with the current experimental result.  相似文献   

18.
田雨 《中国物理 C》2010,34(10):1556-1564
The Drinfeld-Manin construction of U(N) instanton is reformulated in the ADHM formulism, which gives explicit general solutions of the ADHM constraints for U(N) (N ≥ 2k - 1) k-instantons. For the N 〈 2k - 1 case, implicit results are given systematically as further constraints. We find that this formulism can easily be generalized to the noncommutative case, where the explicit solutions are also obtained.  相似文献   

19.
The SO(3) gauge extension of SM, which is proposed to present a successful explanation for the observed small masses of neutrino and the nearly tri-bimaximal neutrino mixing, predicted the vector-like SO(3) triplet Majorana neutrinos and SUL(2) double Higgs bosons. In this work we calculate branching ratios of the charged lepton flavor violating decays lIlJV (V = γ, Z) induced by these Majorana neutrinos and Higgs bosons. We find that under the model parameters constrained by experimental bounds on the decays Z →lIlJ, the branching ratio of decays lI→lJγ can be up to 10^-10, which may be accessible at the future experiments.  相似文献   

20.
The twin Higgs mechanism has recently been proposed to solve the little hierarchy problem. In the context of the left-right twin Higgs (LRTH) model, we discuss single production of the new charged gauge boson WH^- , which is predicted by the left-right twin Higgs model, in association with top quark at the CERN Large Hadron Collider (LHC). It is found that, for a typical nonzero value of mass mixing parameter M = 150 GeV in the LRTH model, the production cross section is in the range of 3 ×10^-2 - 6.07×10^3 fb at the LHC. As long as the WH^- is not too heavy, the possible signatures of the heavy charged gauge boson might be detected at the LHC experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号