共查询到20条相似文献,搜索用时 0 毫秒
1.
Applied Biochemistry and Biotechnology - Effect of sulfate on the oxygen evolution in barley Photosystem II membrane fraction was investigated. Purified Photosystem II membrane fraction was exposed... 相似文献
2.
3.
Chen H Tagore R Das S Incarvito C Faller JW Crabtree RH Brudvig GW 《Inorganic chemistry》2005,44(21):7661-7670
A series of complexes with the formula [Mn(III/IV)2(mu-O)2(L)2(X)2]3+ have been prepared in situ from Mn(II)LCl2 precursors by a general preparative method (L = terpy, Cl-terpy, Br-terpy, Ph-terpy, tolyl-terpy, mesityl-terpy, t Bu3-terpy, EtO-terpy, py-phen, dpya, Me2N-terpy, or HO-terpy, and X = a labile ligand such as water, chloride, or sulfate). The parent complex, where L = terpy and X = water, is a functional model for the oxygen-evolving complex of photosystem II (Limburg, et al. J. Am. Chem. Soc. 2001, 123, 423-430). Crystals of Mn(II)(dpya)Cl2, Mn(II)(Ph-terpy)Cl2, Mn(II)(mesityl-terpy)Cl2, and an organic-soluble di-mu-oxo di-aqua dimanganese complex, [Mn(III/)(IV)2(mu-O)2(mesityl-terpy)2(OH2)2](NO3)3, were obtained and characterized by X-ray crystallography. Solutions of the in situ-formed di-mu-oxo dimanganese complexes were characterized by electrospray mass spectrometry, EPR spectroscopy, and UV-visible spectroscopy, and the rates of catalytic oxygen-evolving activity were assayed. The use of Mn(II)LCl2 precursors leads to higher product purity of the Mn dimers while achieving the 1:1 ligand to Mn stoichiometry appropriate for catalytic activity assay. These methods can be used to screen the catalytic activity of other di-mu-oxo dimanganese complexes generated by using a ligand library. 相似文献
4.
Photosystem II (PS II), found in oxygenic photosynthetic organisms, catalyses the most energetically demanding reaction in nature, the oxidation of water to molecular oxygen and protons. The water oxidase in PS II contains a Mn(4)Ca cluster (oxygen evolving complex, OEC), whose catalytic mechanism has been extensively investigated but is still unresolved. In particular the precise Mn oxidation levels through which the cluster cycles during functional turnover are still contentious. In this, the first of several planned parts, we examine a broad range of published data relating to this question, while considering the recent atomic resolution PS II crystal structure of Umena et al. (Nature, 2011, 473, 55). Results from X-ray, UV-Vis and NIR spectroscopies are considered, using an approach that is mainly empirical, by comparison with published data from known model systems, but with some reliance on computational or other theoretical considerations. The intention is to survey the extent to which these data yield a consistent picture of the Mn oxidation states in functional PS II - in particular, to test their consistency with two current proposals for the mean redox levels of the OEC during turnover; the so called 'high' and 'low' oxidation state paradigms. These systematically differ by two oxidation equivalents throughout the redox accumulating catalytic S state cycle (states S(0)S(3)). In summary, we find that the data, in total, substantially favor the low oxidation proposal, particularly as a result of the new analyses we present. The low oxidation state scheme is able to resolve a number of previously 'anomalous' results in the observed UV-Visible S state turnover spectral differences and in the resonant inelastic X-ray spectroscopy (RIXS) of the Mn pre-edge region of the S(1) and S(2) states. Further, the low oxidation paradigm is able to provide a 'natural' explanation for the known sensitivity of the OEC Mn cluster to cryogenic near infra-red (NIR) induced turnover to alternative spin/redox states in S(2) and S(3). 相似文献
5.
Previously, using acetate deuterated in the methyl hydrogen positions, we showed that acetate binds in close proximity to the Mn cluster/Y(.)(z) tyrosine dual spin complex in acetate-inhibited photosystem II (PSII) preparations exhibiting the "split" EPR signal arising from the S(2)-Y(.)(z) interaction [Force, D. A.; Randall, D. W.; Britt, R. D. Biochemistry 1997, 36, 12062-12070]. By using paramagnetic NO to quench the paramagnetism of Y(.)(z), we are able to observe the ESEEM spectrum of deuterated acetate interacting with only the Mn cluster. A good fit of the ESEEM data indicates two (2)H dipolar hyperfine couplings of 0.097 MHz and one of 0.190 MHz. Modeling of these dipolar interactions, using our "dangler" 3 + 1 model for the S(2)-state of the Mn cluster, reveals distances consistent with direct ligation of acetate to the Mn cluster. As acetate inhibition is competitive with the essential cofactor Cl(-), this suggests that Cl(-) ligates directly to the Mn cluster. The effect of acetate binding on the structure of the Mn cluster is investigated by comparing the Mn-histidine coupling in NO/acetate-treated PSII and untreated PSII using ESEEM. We find that the addition of acetate and NO does not affect the histidine ligation to the Mn cluster. We also investigate the ability of acetate to access Y(.)(z) in Mn-depleted PSII, a PSII preparation expected to be more solvent accessible than intact PSII. We detect no coupling between Y(.)(z) and acetate. We have previously shown that small alcohols such as methanol can ligate to the Mn cluster with ease, while larger alcohols such as 2-propanol, as well as DMSO, are excluded [Force, D. A.; Randall, D. W.; Lorigan, G. A.; Clemens, K. L.; Britt, R. D. J. Am. Chem. Soc. 1998, 120, 13321-13333]. We probe the effect of acetate binding on the ability of methanol and DMSO to bind to the Mn cluster. We find that methanol is able to bind to the Mn cluster in the presence of acetate. We detect no DMSO binding in the presence of acetate. Thus, acetate binding does not increase the affinity or accessibility for DMSO binding at the Mn cluster. We also explore the possibility that the acetate binding site is also a binding site for substrate water. By comparing the ratioed three-pulse ESEEM spectra of a control, untreated PSII sample in 50% D(2)O to an NO/acetate-treated PSII sample in 50% D(2)O, we find that the binding of acetate to the oxygen evolving complex of photosystem II displaces deuterons bound very closely to the Mn cluster. 相似文献
6.
Najafpour MM 《Journal of photochemistry and photobiology. B, Biology》2011,104(1-2):111-117
The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. 相似文献
7.
Becker K Cormann KU Nowaczyk MM 《Journal of photochemistry and photobiology. B, Biology》2011,104(1-2):204-211
The efficient incorporation and assembly of calcium, chloride and manganese followed by photoactivation of the water-oxidizing complex (WOC) is a prerequisite for the unique water-splitting activity of photosystem II. This minireview summarizes the recent results on incorporation and storage of the inorganic cofactors, photoactivation of the WOC and assembly of the protein environment at the donor site of PSII in cyanobacteria with a special focus on the role of the Psb27 protein. 相似文献
8.
Kim SH Gregor W Peloquin JM Brynda M Britt RD 《Journal of the American Chemical Society》2004,126(23):7228-7237
The proximity of the calcium/strontium binding site of the oxygen evolving complex (OEC) of photosystem II (PSII) to the paramagnetic Mn cluster is explored with (87)Sr three-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy. CW-EPR spectra of Sr(2+)-substituted Ca(2+)-depleted PSII membranes show the modified g = 2 multiline EPR signal as previously reported. We performed three-pulse ESEEM on this modified multiline signal of the Mn cluster using natural abundance Sr and (87)Sr, respectively. Three-pulse ESEEM of the natural abundance Sr sample exhibits no detectable modulation by the 7% abundance (87)Sr. On the other hand, that of the (87)Sr enriched (93%) sample clearly reveals modulation arising from the I = (9)/(2) (87)Sr nucleus weakly magnetically coupled to the Mn cluster. Using a simple point dipole approximation for the electron spin, analysis of the (87)Sr ESEEM modulation depth via an analytic expression suggests a Mn-Ca (Sr) distance of 4.5 A. Simulation of three-pulse ESEEM with a numerical matrix diagonalization procedure gave good agreement with this analytical result. A more appropriate tetranuclear magnetic/structural model for the Mn cluster converts the 4.5 A point dipole distance to a 3.8-5.0 A range of distances. DFT calculations of (43)Ca and (87)Sr quadrupolar interactions on Ca (and Sr substituted) binding sites in various proteins suggest that the lack of the nuclear quadrupole induced splitting in the ESEEM spectrum of (87)Sr enriched PSII samples is related to a very high degree of symmetry of the ligands surrounding the Sr(2+) ion in the substituted Ca site. Numerical simulations show that moderate (87)Sr quadrupolar couplings decrease the envelope modulation relative to the zero quadrupole case, and therefore we consider that the 3.8-5.0 A range obtained without quadrupolar coupling included in the simulation represents an upper limit to the actual manganese-calcium distance. This (87)Sr pulsed EPR spectroscopy provides independent direct evidence that the calcium/strontium binding site is close to the Mn cluster in the OEC of PSII. 相似文献
9.
Barber J 《Inorganic chemistry》2008,47(6):1700-1710
The oxygen in our atmosphere is derived from and maintained by the water-splitting process of photosynthesis. The enzyme that facilitates this reaction and therefore underpins virtually all life on our planet is known as photosystem II (PSII). It is a multisubunit enzyme embedded in the lipid environment of the thylakoid membranes of plants, algae, and cyanobacteria. Powered by light, PSII catalyzes the chemically and thermodynamically demanding reaction of water splitting. In so doing, it releases molecular oxygen into the atmosphere and provides the reducing equivalents required for the conversion of carbon dioxide into the organic molecules of life. Recently, a fully refined structure of an isolated 700 kDa cyanobacterial dimeric PSII complex was elucidated by X-ray crystallography, which gave organizational and structural details of the 19 subunits (16 intrinsic and 3 extrinsic) that make up each monomer and provided information about the position and protein environments of the many different cofactors it binds. The water-splitting site was revealed as a cluster of four Mn ions and a Ca ion surrounded by amino acid side chains, of which six or seven form direct ligands to the metals. The metal cluster was originally modeled as a cubane-like structure composed of three Mn ions and the Ca (2+) linked by oxo bonds and the fourth Mn attached to the cubane via one of its O atoms. New data from X-ray diffraction and X-ray spectroscopy suggest some alternative arrangements. Nevertheless, all of the models are sufficiently similar to provide a basis for discussing the chemistry by which PSII splits water and makes oxygen. 相似文献
10.
To maintain its functionality, photosystem II (PSII) employs several types of auxiliary molecules (cofactors). As shown for PSII from Thermosynechococcus elongatus, lipids previously thought to play mostly the role of a hydrophobic matrix for embedding the membrane proteins, must be considered as a new, multifunctional type of cofactors, playing a vital role in the fine tuning of PSII and in its overall operation. The 2.9 ? resolution crystal structure of cyanobacterial homodimeric PSII showed the position of 25 lipid molecules per monomer, and allowed detailed analysis of individual binding sites as well as functional aspects related to lipids. The positions of the bound lipids suggest that they are essential for the assembly and disassembly of PSII, provide the proper environment for plastoquinone exchange, might tune electron transfer through contacts with chlorophylls and carotenoids, and might serve as an oxygen-outlet system from the lumen. 相似文献
11.
van der Weij-De Wit CD Doust AB van Stokkum IH Dekker JP Wilk KE Curmi PM Scholes GD van Grondelle R 《The journal of physical chemistry. B》2006,110(49):25066-25073
We report an investigation of energy migration dynamics in intact cells of the photosynthetic cryptophyte Rhodomonas CS24 using analyses of steady-state and time-resolved fluorescence anisotropy measurements. By fitting a specific model to the fluorescence data, we obtain three time scales (17, 58, and 113 ps) by which the energy is transferred from phycoerythrin 545 (PE545) to the membrane-associated chlorophylls (Chls). We propose that these time scales reflect both an angular distribution of PE545 around the photosystems and the relative orientations of the donor dihydrobiliverdin (DBV) bilin and the acceptor Chl. Contrary to investigations of the isolated antenna complex, it is demonstrated that energy transfer from PE545 does not occur from a single-emitting bilin, but rather both the peripheral dihydrobiliverdin (DBV) chromophores in PE545 appear to be viable donors of excitation energy to the membrane-bound proteins. The model shows an almost equal distribution of excitation energy from PE545 to both photosystem I (PSI) and photosystem II (PSII), whose trap times correspond well to those obtained from experiments on isolated photosystems. 相似文献
12.
Boc-protected tyrosine-attached corrole ligand on the “ortho” position compound 3, its corresponding copper (III) 4a, manganese (IV) 4b, and manganese (III) 4c complexes have been designed and synthesized based on the structures of active-centers of related biological systems. 1H NMR and electronic absorption spectra of these metal complexes are investigated. The crystal structure of 4a displays the relative position of TyrOH unit to the high valent metal center. Electrochemistry investigations display the possibilities of intramolecular electron or energy transfer between TyrOH group and metal corrole group. 相似文献
13.
Inhibition of photosynthetic electron transport by UV-A radiation targets the photosystem II complex
We have studied the inhibition of photosynthetic electron transport by UV-A (320-400 nm) radiation in isolated spinach thylakoids. Measurements of Photosystem II (PSII) and Photosystem I activity by Clark-type oxygen electrode demonstrated that electron flow is impaired primarily in PSII. The site and mechanism of UV-A induced damage within PSII was assessed by flash-induced oxygen and thermoluminescence (TL) measurements. The flash pattern of oxygen evolution showed an increased amount of the S0 state in the dark, which indicate a direct effect of UV-A in the water-oxidizing complex. TL measurements revealed the UV-A induced loss of PSII centers in which charge recombination between the S2 state of the water oxidizing complex and the semireduced Q(A)- and Q(B)- quinone electron acceptors occur. Flash-induced oscillation of the B TL band, originating from the S2Q(B)- recombination, showed a decreased amplitude after the second flash relative to that after the first one, which is consistent with a decrease in the amount of Q(B)- relative to Q(B) in dark adapted samples. The efficiency of UV-A light in inhibiting PSII electron transport exceeds that of visible light 45-fold on the basis of equal energy and 60-fold on the basis of equal photon number, respectively. In conclusion, our data show that UV-A radiation is highly damaging for PSII, whose electron transport is affected both at the water oxidizing complex, and the binding site of the Q(B) quinone electron acceptor in a similar way to that caused by UV-B radiation. 相似文献
14.
The ligand tris(2-hydroxyiminopropyl)amine (Ox(3)H(3)) binds to nickel(II) in multiple protonation states. In the neutral state, the X-ray crystal structure of the monomeric complex [Ni(Ox(3)H(3))(NO(3))(H(2)O)](NO(3)).(H(2)O), 1, has six-coordinate pseudo-octahedral geometry, with binding of the amine and three oxime nitrogens, a nitrate, and a water. In the mono-deprotonated form, the X-ray crystal structure shows a dimer, [Ni(Ox(3)H(2))(CH(3)CN)](2)(ClO(4))(2), 2, which has bridging oximate groups and a Ni-Ni distance of 3.575 A. The fully deprotonated complex, 3, shows significantly low Ni(II) oxidation potentials at -390 and +165 mV (versus Fc(+)/Fc). Complex 3 shows reactivity when exposed to O(2), consuming multiple O(2) equivalents and turning from the purple 3 to a dark brown complex, 4. Complex 4 has an EPR spectrum consistent with Ni(III), but spin quantitation accounts for only about 10% of the total Ni, consistent with turnover of the Ni oxidation states. This Ni(II)/O(2) system oxidizes triphenylphosphine to its oxide, with incorporation of the isotopic label from O(2). 相似文献
15.
The diffusion of alkanes in nanoporous materials as measured by different experimental techniques is thought to be highly dependent on the measuring technique employed. However, when the data are corrected for the loading at which the measurement was performed, the different data series correspond with each other much better than expected. 相似文献
16.
17.
Yano J Pushkar Y Glatzel P Lewis A Sauer K Messinger J Bergmann U Yachandra V 《Journal of the American Chemical Society》2005,127(43):14974-14975
The biological generation of oxygen by the oxygen-evolving complex in photosystem II (PS II) is one of nature's most important reactions. The recent X-ray crystal structures, while limited by resolutions of 3.2-3.5 A, have located the electron density associated with the Mn4Ca cluster within the multiprotein PS II complex. Detailed structures critically depend on input from spectroscopic techniques, such as EXAFS and EPR/ENDOR, as the XRD resolution does not allow for accurate determination of the position of Mn/Ca or the bridging and terminal ligand atoms. The number and distances of Mn-Mn/Ca/ligand interactions determined from EXAFS provide important constraints for the structure of the Mn4Ca cluster. Here, we present data from a high-resolution EXAFS method using a novel multicrystal monochromator that show three short Mn-Mn distances between 2.7 and 2.8 A and, hence, the presence of three di-mu-oxo-bridged units in the Mn4Ca cluster. This result imposes clear limitations on the proposed structures based on spectroscopic and diffraction data and provides input for refining such structures. 相似文献
18.
Kinetic studies of photosystem II in photosynthesis 总被引:5,自引:0,他引:5
P Joliot 《Photochemistry and photobiology》1968,8(5):451-463
Abstract— It appears that even if some kinetic aspects of the activation and stimulation phenomena of photosystem II remain not understood. the only interpretation we can propose involves the addition of the effect of two photoreactions on the same photochemical center. The main arguments we developed in favour of this hypothesis are: (1) the formation of one atom of oxygen requires the addition of the effect of two photo-reactions (one photoreaction per electron). (2) after a dark period two quanta must be absorbed by the same photochemical center in order to produce oxygen. (3) the existence of a form of the photochemical substrate in which energy is stored is proved by the fact that. after a preillumination by two flashes, the quantum requirement for the production of one molecule of oxygen can reach a value almost two times lower than the quantum requirement measured in stationary conditions. 相似文献
19.
Siegbahn PE 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(36):9217-9227
Based on recent X-ray structures of the oxygen-evolving complex in photosystem II, quantum chemical geometry optimizations of several thousand structures have been performed in order to elucidate the mechanism for dioxygen formation. Many of the results of these calculations have been presented previously. The energetically most stable structure of the S(4) state has been used in the present study to investigate essentially all the possible ways the O--O bond can be formed in this structure. A key feature, emphasized previously, of the S(4) state is that an oxygen radical ligand is present rather than an Mn(V) state. Previous studies have indicated that this oxygen radical can form an O--O bond by an attack from a water molecule in the second coordination shell. The present systematic investigation has led to a new type of mechanism that is significantly favored over the previous one. A calculated transition-state barrier of 12.5 kcal mol(-1) was found for this mechanism, whereas the best previous results gave 18-20 kcal mol(-1). A requirement on the spin alignment for a low barrier is formulated. 相似文献
20.
The excited states of a structurally well-determined photosystem II (PSII) reaction center are obtained using an effective Hamiltonian for the interaction between the Q(y) states. The latter are calculated using the time-dependent density functional theory (DFT) method in DFT-optimized geometries, but with conserved side group orientations. Of particular importance is the orientation of the vinyl group of ring I. Couplings are calculated using actual transition charge distributions via the INDO/S model. Good agreement with experimental spectra is obtained. The lowest excited state is mainly located on the inactive B-side, but with a large component on P(A) too, making charge separation to H(A) possible at low temperature. The "trap state" and triplet state are localized on the inactive B-side. Since the spin singlet Q(y) states of the reaction center are all within a rather small energy range, the state with the highest component of B(A)*, on the blue side of the Q(y) absorption, has a rather high Boltzmann population at room temperature. The charge-transfer states, however, have a rather large spread and cannot be calculated accurately at present. The orientation of the phytyl chains is important and has as a consequence that the energy for the charge-separated B(A)+ H(A)- state is significantly lower than the corresponding state on the B-side. It follows that the B(A)* and P(A)* states are both possible origins for a fast charge separation in PSII. 相似文献