首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Xu BY  Xu JJ  Xia XH  Chen HY 《Lab on a chip》2010,10(21):2894-2901
This paper reports a new fabrication method of lithography-free nanochannel array. It is based on the cracking process on the surface of a polystyrene (PS) Petri-dish, one type of thermoplastic that is composed of uni-axial macromolecular chains. Under proper conditions, parallel nanochannels with equal interspaces are obtained. Control over the channel depth from 20 nm to 200 nm is achieved, with the channel length reaching tens of millimetres. The PDMS replication based on PS nanochannel array has been successfully carried out. In combination with the microstructure, both an ion enrichment device and a current rectification device are fabricated, and their quantified characters manifested the applicability of the channel array structure in nanofluidics.  相似文献   

2.
Inspired from their biological counterparts, chemical modification of the interior surface of nanochannels with functional molecules may provide a highly efficient means to control ionic or molecular transport through nanochannels. Herein, we have designed and prepared a aldehyde calix[4]arene (C4AH), which was attached to the interior surface of a single nanochannel by using a click reaction, and that showed a high response for arginine (Arg). Furthermore, the nanofluidic sensing system has been challenged with complex matrices containing a high concentration of interfering sequences and serum. Based on this finding, we believe that the artificial nanochannel can be used for practical Arg‐sensing devices, and be applied in a biological environment.  相似文献   

3.
A nanochannel array based nanodevice can mimic the biological environments and thus unveil the natural properties, conformation and recognition information of biomolecules such as proteins and DNA in confined spaces. Here we report that porous anodic alumina (PAA) of a highly parallel nanochannel array covalently modified with proteins significantly modulates the transport of a negatively charged probe of ferricyanide due to the electrostatic interactions between the probes and modified nanochannel inner surface. Results show that such electrostatic interaction exists in a wide range of ionic strength from 1 mM to 100 mM in 20 nm nanochannels modified with proteins (hemoglobin, bovine serum albumin, and goat anti-rabbit IgG secondary antibody). In addition, the maximal steady-state flux of the charged probe through the modified nanochannel array is directly related to the ionic strength which determines the electric double layer thickness and solution pH which modulates the nanochannel surface charge. Thus, the modulated mass transport of the probe by solution pH can be used to study the charge properties of the immobilized proteins in nanochannel confined conditions, leading us to obtain the isoelectric point (pI) of the proteins confined in nanochannels. The determined pI values of two known proteins of hemoglobin and bovine serum albumin are close to the ones of the same proteins covalently modified on a 3-mercaptopropionic acid self-assembled monolayer/gold electrode. In addition, the pI of an unknown protein of goat anti-rabbit IgG secondary antibody confined in nanochannels was determined to be 6.3. Finally, the confinement effect of nanochannels on the charge properties of immobilized proteins has been discussed.  相似文献   

4.
We demonstrate that fabrication of well-defined nanofluidic systems can be greatly simplified by injection molding of thermoplastic polymers. Chips featuring nanochannel arrays, microchannels and integrated interconnects are produced in a single processing step by injection molding. The resulting open channel structures are subsequently sealed by facile plasma-enhanced thermal bonding of a polymer film. This fast, inexpensive and industry-compatible method thus provides a single-use all-polymer platform for nanofluidic lab-on-a-chip applications. Its applicability for nanofluidics is demonstrated by DNA stretching experiments performed on individual double-stranded DNA molecules confined in the injection molded nanochannels. The obtained results are consistent with measurements performed in costly state-of-the-art silica nanochannels, for both straight and tapered channel geometries.  相似文献   

5.
李仲秋  吴增强  夏兴华 《色谱》2020,38(10):1189-1196
近年来,随着材料科学、微纳加工技术和微纳尺度物质传输理论的发展,纳通道技术得到了越来越多的研究和关注。纳通道包括生物纳通道和人工纳通道,其孔径通常为1~100 nm。在这一尺度下,通道表面与通道内物质之间的作用概率大大增强,使得纳通道表现出许多与宏观体系不同的物质传输特性,例如通道表面电荷与通道内离子之间的静电作用产生了离子选择性,通道内电化学势的不对称分布产生了离子整流特性,物质传输过程中占据通道产生了阻塞脉冲特性等。纳通道中的这些物质传输特性在传感、分离、能源等领域具有广泛应用,例如通过对纳通道进行功能化修饰可以实现门控离子传输;利用亚纳米尺度的通道可以实现单分子传感;利用通道与传输物质之间的相互作用可以实现离子、分子、纳米粒子的分离;利用纳通道的离子选择性可以在通道内实现电荷分离,将不同形式的能量(如光、热、压力、盐差等)高效转化为电能。纳通道技术是化学、材料科学、纳米技术等多学科的交叉集合,在解决生物、环境、能源等基本问题方面具有良好的前景。该文综述了近10年来与纳通道物质传输理论以及纳通道技术应用相关的前沿研究,梳理了纳通道技术的发展过程,并对其在各个领域的应用进行了总结与展望。  相似文献   

6.
A novel biomimetic ion‐responsive multi‐nanochannel system is constructed by covalently immobilizing a metal‐chelating ligand, 2,2′‐dipicolylamine (DPA), in polyporous nanochannels prepared in a polymeric membrane. The DPA‐modified multi‐nanochannels show specific recognition of zinc ions over other common metal ions, and the zinc‐ion‐chelated nanochannels can be used as secondary sensors for HPO42? anions. The immobilized DPA molecules act as specific‐receptor binding sites for zinc ions, which leads to the highly selective zinc‐ion response through monitoring of ionic current signatures. The chelated zinc ions can be used as secondary recognition elements for the capture of HPO42? anions, thereby fabricating a sensing nanodevice for HPO42? anions. The success of the DPA immobilization and ion‐responsive events is confirmed by measurement of the X‐ray photoelectron spectroscopy (XPS), contact angle (CA), and current–voltage (IV) characteristics of the systems. The proposed nanochannel sensing devices display remarkable specificity, high sensitivity, and wide dynamic range. In addition, control experiments performed in complex matrices suggest that this sensing system has great potential applications in chemical sensing, biotechnology, and many other fields.  相似文献   

7.
Nanochannels have been used as hosts for supramolecular organization for a large variety of guests. The possibilities for building complex structures based on 2D and especially 3D nanochannel hosts are larger than those based on 1D nanochannel hosts. The latter are, however, easier to understand and to control. They still give rise to a rich world of fascinating objects with very distinguished properties. Important changes are observed if the channel diameter becomes smaller than 10 nm. The most advanced guest-nanochannel composites have been synthesized with nanochannels bearing a diameter of about 1 nm. Impressive complexity has been achieved by interfacing these composites with other objects and by assembling them into specific structures. This is explained in detail. Guest-nanochannel composites that absorb all light in the right wavelength range and transfer the electronic excitation energy via FRET to well-positioned acceptors offer a unique potential for developing FRET-sensitized solar cells, luminescent solar concentrators, color-changing media, and devices for sensing in analytical chemistry, biology, and diagnostics. Successful 1D nanochannel hosts for synthesizing guest-host composites have been zeolite-based. Among them the largest variety of guest-zeolite composites with appealing photochemical, photophysical, and optical properties has been prepared by using zeolite L (ZL) as a host. The reasons are the various possibilities for fine tuning the size and morphology of the particles, for inserting neutral molecules and cations, and for preparing rare earth complexes inside by means of the ship-in-a-bottle procedure. An important fact is that the channel entrances of ZL-based composites can be functonalized and completely blocked, if desired, and furthermore that targeted functionalization of the coat is possible. Different degrees of organizational levels and prospects for applications are discussed, with special emphasis on solar energy conversion devices.  相似文献   

8.
In this study, we propose a novel micro-/nanofluidic device that can generate a chemical concentration gradient using a parallel nanochannel as gradient generator. This device is easy to fabricate, showing high reproducibility. Its main feature is the multiple-nanochannel-based gradient generator, which permits the diffusion of small molecules and tunably generates concentration gradients. The nanopattern for the nanochannels can be rapidly and easily fabricated by wrinkling a diamond-like carbon thin film which is deposited on a polydimethylsiloxane substrate; the generation of the concentration gradient can be adjusted by controlling the dimensions of the nanochannels. The developed gradient generator is embedded into a microfluidic device to study chemotaxis in the nematode Caenorhabditis elegans, which has a highly developed chemosensory system and can detect a wide variety of chemical molecules. This device shows good performance for rapid analysis of C. elegans chemotaxis under sodium chloride stimuli.
Figure
A parallel‐nanochannel‐based microfluidic device which can passively manipulate chemical concentration gradient by controlling the nanochannel geometry is employed for the analysis of Caenorhabditis elegans chemotaxis.  相似文献   

9.
We present a new and simple approach to fabricate wafer-scale, thin encapsulated, two-dimensional nanochannels by using conventional surface-micromachining technology and thin-film evaporation. The key steps to the realization of two-dimensional nanochannels are a fine etching of a sacrificial layer to create underetching spaces at the nanometer regime, and an accurate thin-film evaporation for encapsulation. Well-defined cross-sectional, encapsulated nanochannel arrays with dimensions as small as 20 nm in both width and height have been realized at the wafer-scale. The fabricated nanochannels with a channel length of 10mm have been used as a suitable fluidic platform for confining a solution containing nanomolar concentrations of Alexa fluorescent molecules. Initial results toward visualization of single Alexa molecules in the confined solution are reported.  相似文献   

10.
Datta A  Gangopadhyay S  Temkin H  Pu Q  Liu S 《Talanta》2006,68(3):659-665
A unique phenomenon, ion-enrichment and ion-depletion effect, exists in nanofluidic channels and is observed in amorphous silicon (α-Si) nanochannels as shallow as 50 nm. As a voltage is applied across a nanochannel, ions are rapidly enriched at one end and depleted at the other end of the nanochannel. α-Si is deposited on glass by plasma enhanced chemical vapor deposition and is selectively etched to form nanochannels. The depth of nanochannels is defined by the thickness of the α-Si layer. Low temperature anodic bonding of α-Si to glass was used to seal the channel with a second glass wafer. The strength of the anodic bond was optimized by the introduction of a silicon nitride adhesion promoting layer and double-sided bonding resulting from the electric field reversal. Completed channels, 50 nm in depth, 5 micron wide, and 1 mm long were completely and reliably sealed. Structures based on nanochannels 50-300 nm deep were successfully incorporated into nanofluidic devices to investigate ionic accumulation and depletion effect due to overlapping of electric double layer.  相似文献   

11.
A sensitive and label-free method of monitoring the thrombin–aptamer recognition reaction has been developed using an array of nanochannels coupled with an electrochemical detection technique. Due to the highly amplified ion current produced by an array of nanochannels compared to a single nanochannel/pore, a significant increase in detection sensitivity has been achieved.  相似文献   

12.
Fully stretched DNA molecules are becoming a fundamental component of new systems for comprehensive genome analysis. Among a number of approaches for elongating DNA molecules, nanofluidic molecular confinement has received enormous attentions from physical and biological communities for the last several years. Here we demonstrate a well-optimized condition that a DNA molecule can stretch almost to its full contour length: the average stretch is 19.1 μm ± 1.1 μm for YOYO-1 stained λ DNA (21.8 μm contour length) in 250 nm × 400 nm channel, which is the longest stretch value ever reported in any nanochannels or nanoslits. In addition, based on Odijk's polymer physics theory, we interpret our experimental findings as a function of channel dimensions and ionic strengths. Furthermore, we develop a Monte Carlo simulation approach using a primitive model for the rigorous understanding of DNA confinement effects. Collectively, we present a more complete understanding of nanochannel confined DNA stretching via the comparisons to computer simulation results and Odijk's polymer physics theory.  相似文献   

13.
A theory is presented of the elongation of double-stranded DNA confined in a nanochannel based on a study of the formation of hairpins. A hairpin becomes constrained as it approaches the wall of a channel which leads to an entropic force causing the hairpin to tighten. The DNA in the hairpin remains double-stranded. The free energy of the hairpin is significantly larger than what one would expect if this entropic effect were unimportant. As a result, the distance between hairpins or the global persistence length is often tens of micrometer long and may even reach millimeter sizes for 10 nm thin channels. The hairpin shape and size and the DNA elongation are computed for nanoslits and circular and square nanochannels. A comparison with experiment is given.  相似文献   

14.
Sen YH  Jain T  Aguilar CA  Karnik R 《Lab on a chip》2012,12(6):1094-1101
Nanofluidic sensing elements have been the focus of recent experiments for numerous applications ranging from nucleic acid fragment sizing to single-molecule DNA sequencing. These applications critically rely on high measurement fidelity, and methods to increase resolution are required. Herein, we describe fabrication and testing of a nanochannel device that enhances measurement resolution by performing multiple measurements (>100) on single DNA molecules. The enhanced measurement resolution enabled length discrimination between a mixture of λ-DNA (48.5 kbp) and T7 DNA (39.9 kbp) molecules, which were detected as transient current changes during translocation of the molecules through the nanochannel. As long DNA molecules are difficult to resolve quickly and with high fidelity with conventional electrophoresis, this approach may yield potentially portable, direct electrical sizing of DNA fragments with high sensitivity and resolution.  相似文献   

15.
Gu J  Gupta R  Chou CF  Wei Q  Zenhausern F 《Lab on a chip》2007,7(9):1198-1201
We present a simple sealing method to fabricate nanofluidic channels, where plasma treated polysilsesquioxane (PSQ) thin film on a rigid support is used to bond to a hydrophilic glass surface permanently at room temperature. This method shows precise dimension control below 10 nm with easy experimental setup. Using this method, one dimensional confined shallow nanochannels with a depth as small as 8 nm and an aspect ratio of <4 x 10(-5), two dimensional confined nanochannel arrays, and integrated nano/microchannel devices with a micro-to-nano interface have been demonstrated. Smooth transfer of DNA fragments from microchannel to nanochannel through the interface area was observed.  相似文献   

16.
Nanofluidics is a recent appearing research field, introduced in 1995 as an analogue of the field of microfluidics, and has been becoming popular in the past few years. The proximity of the channel dimension, the Debye length, and the size of biomolecules such as DNA and proteins gives the unique features of nanofluidic devices. Of various unique properties of the nanofluidics, mass transport in nanochannel plays determining roles in fundamental reaches and practical applications of nanofluidic device. Thus, much work including numerical and experimental researches has been performed to investigate the mass transport behaviors in nanofluidic devices. This review summarizes the fabrication technologies for nanofluidic devices, the mass transport behaviors in nanochannel, and their applications in bioanalysis. The main focus will be laid on the effects of nanochannel size and surface charge on mass transport including electrokinetic transport of charged analytes, diffusion of electric neutral molecules, ionic current rectification, concentration polarization, nonlinear electrokinetic flow at the micro-nanofluidic interfaces.  相似文献   

17.
With the development of nanotechnology and materials science, bioinspired nanochannels appeared by mimicking the intelligent functions of biological ion channels. They have attracted a great deal of attention in recent years due to their controllable structure and tunable chemical properties. Inspired by the layered microstructure of nacre, 2D layered materials as excellent matrix material of nanochannel come into our field of vision. Bionic nanochannels based on 2D materials have the advantages...  相似文献   

18.
质子化过程是大多数酸碱理论的核心,也发生在许多生命过程中。因此,研究限域环境中分子或官能团的质子化过程将为进一步认识酸碱理论和阐述限域环境中生物分子的基本行为提供理论依据。本文提出了一种以荷电电化学探针检测多孔氧化铝阵列纳米通道内表面官能团质子化过程的新方法。该方法利用纳米通道表面官能团的质子化过程改变了表面荷电性质,从而调控荷电电化学探针在纳米通道中的传输行为。实验中以喷涂在阵列氧化铝纳米通道膜一侧的薄金膜为工作电极,检测通过阵列纳米通道荷电电化学探针的流量,以此获得纳米通道限域条件下的质子化过程。同时以多孔氧化铝阵列纳米通道为限域空腔,利用硅烷化反应将氨基修饰在纳米通道的内表面,通过检测不同pH值条件下铁氰酸根离子在纳米通道中流量的变化,获得了纳米通道限域条件下氨基质子化滴定曲线。结果表明,纳米通道限域条件下氨基官能团发生一步质子化,其pK1/2值为5.9。本文提出的方法适用于研究纳米通道限域条件下其它官能团或生物分子的质子化过程。  相似文献   

19.
We developed a novel flow control system for a nanofluidic chemical process. Generally, flow control in nanochannels is difficult because of its high-pressure loss with very small volume flow rate. In our flow control method, liquid pressure in a microchannel connected to the nanochannels is regulated by utilizing a backpressure regulator. The flow control method was verified by using simple structured microchip, which included parallel nanochannels. We found that the observed flow rate was three times lower than the value expected from Hagen-Poiseuille's equation. That implied a size-dependent viscosity change in the nanochannels. Then, we demonstrated mixing of two different fluorescent solutions in a Y-shaped nanochannel and also a proton exchange reaction in the Y-shaped nanochannel. The flow control method will contribute to further integration of nanochemical systems.  相似文献   

20.
Transportation, release behavior, and stability of a green fluorescent protein (GFP, 3×4 nm) in self‐assembled organic nanotubes with three different inner diameters (10, 20, and 80 nm) have been studied in terms of novel nanocontainers. Selective immobilization of a fluorescent acceptor dye on the inner surface enabled us to not only visualize the transportation of GFP in the nanochannels but to also detect release of the encapsulated GFP to the bulk solution in real time, based on fluorescence resonance energy transfer (FRET). Obtained diffusion constants and release rates of GFP markedly decreased as the inner diameter of the nanotubes was decreased. An endo‐sensing procedure also clarified the dependence of the thermal and chemical stabilities of the GFP on the inner diameters. The GFP encapsulated in the 10 nm nanochannel showed strong resistance to heat and to a denaturant. On the other hand, the 20 nm nanochannel accelerated the denaturation of the encapsulated GFP compared with the rate of denaturation of the free GFP in bulk and the encapsulated GFP in the 80 nm nanochannels. The confinement effect based on rational fitting of the inner diameter to the size of GFP allowed us to store it stably and without denaturation under high temperatures and high denaturant concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号