首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Catalytic growth of 1-D GaN nanostructures is achieved at temperatures from 550 to 850 °C using NH3 and gallium acetylacetonate. Structural characterization of the 1-D GaN nanostructures by HRTEM shows that straight GaN nanowires, needle-like nanowires (nanoneedles), and bamboo-shoot-like nanoneedles are synthesized at 750, 650, and 550 °C, respectively. In addition to selecting a proper catalyst, providing sufficient precursors has been demonstrated to be a crucial factor for the low-temperature growth of 1-D GaN nanostructures via the VLS mechanism. Possible mechanisms for forming nanoneedles at low temperatures are proposed. PACS 61.46.+w; 68.65.–k; 81.07.–b  相似文献   

2.
One-dimensional polyaniline nanostructures were synthesized by interfacial polymerization in a solids-stabilized oil/water emulsion for the first time. The products were characterized with TEM, FTIR and UV-vis. FTIR analyses proved the polyaniline synthesized were of emeraldine salt form; the results of TEM showed that when MgCO3 and CaCO3 particles were used as emulsifiers, polyaniline nanofibers with an average diameter of 33 nm and nanotubes with an average outer diameter of 28 nm were obtained, respectively. Comparing to ordinary interfacial polymerization approach, our new route needed much less amount of oil phase and shorter polymerization time. A possible mechanism for the formation of one-dimensional polyaniline nanostructures was suggested.  相似文献   

3.
Large-scale micro/nanosized Ga(2)O(3) structures were synthesized via a simple vapor p9hase growth method. The morphology of the as-grown structures varied from aligned arrays of smooth nano/microscale wires to composite and complex microdendrites. We present evidence that the formation of the observed structure depends strongly on its position relative to the source materials (the concentration distribution) and on the growth temperature. A growth model is proposed, based on the vapor-solid (VS) mechanism, which can explain the observed morphologies.  相似文献   

4.
The micro/nanostructures of metal-organic complex Ag-TCNQ were successfully synthesized by the reaction between Ag film and TCNQ dissolved in acetonitrile via two solution routes, i.e. immerging and dipping reaction. X-ray diffraction confirmed that the obtained Ag-TCNQ micro/nanostructures were crystalline. The morphology of the as-grown structures varied from straight nanowires and microtubes to complex fractals and dendrites. The growth mechanism of the mainly dendrites may be considered within the framework of DLA model.  相似文献   

5.
Micro/nanostructures based on the metal-organic complex Cu-TCNQ were successfully synthesized by a novel method: vapor-induced reaction. Scanning electron microscopy was used to investigate the morphology on the three different parts of the substrate: the hot reaction area, a transitional reaction area and an induced reaction area. The results show that the morphology of the as-grown structures evolves from microstructures to nanostructures. The formation mechanism of these different structures may be understood from electrochemical principles and the decreasing concentration of TCNQ.  相似文献   

6.
We have grown GaN films on mica substrates using pulsed laser deposition for the first time and investigated their structural properties using electron beam and X-ray diffraction. We found that GaN (000-1) grows on mica (001) with an in-plane alignment of [11-20] GaN//[010] mica. Despite the large lattice mismatch between GaN and mica, 6 and 43% along the [100] mica and [010] mica directions, respectively, cubic GaN phase or 30° rotated domains are scarcely observed in the film. This phenomenon can be attributed to the enhanced surface migration of film precursors due to the large atomically flat terraces and the weak Van der Waals bonding on the mica surface.  相似文献   

7.
The effect of changing the misfit dislocation propagation direction during GaN layer growth on the AlN/SiC/Si(111) structure surface is detected. The effect is as follows. As the GaN layer growing on AlN/SiC/Si(111) reaches a certain thickness of ~300 nm, misfit dislocations initially along the layer growth axis stop and begin to move in the direction perpendicular to the growth axis. A theoretical model of AlN and GaN nucleation on the (111) SiC/Si face, explaining the effect of changing the misfit dislocation motion direction, is constructed. The effect of changing the nucleation mechanism from the island one for AlN on SiC/Si(111) to the layer one for the GaN layer on AlN/SiC/Si is experimentally detected and theoretically explained.  相似文献   

8.
Various β-gallium oxide (β-Ga2O3) nanostructures such as nanowire, nanobelt, nanosheet, and nanocolumn were synthesized by the thermal annealing of compacted gallium nitride (GaN) powder in flowing nitrogen. We suggest that Ga2O3 vapor might be formed by the reaction of oxygen with the gaseous Ga formed by GaN decomposition. The Ga2O3 vapor diffuses into voids derived by compacting GaN powder and is supersaturated there, resulting in the growth of Ga2O3 nanostructures via the vapor–solid (VS) mechanism. Ga2O3 plate-like hillocks and nanostructures were also grown on the surface of a c-plane sapphire placed on the GaN pellet.  相似文献   

9.
We investigated the influence of the ZnO coating on the properties of one-dimensional (1D) nanostructures of SnO2. We have employed X-ray diffraction, scanning electron microscope, transmission electron microscope and photoluminescence (PL) spectroscopy to characterize both as-synthesized and ZnO-coated products. We observed that deposition process of ZnO by using an atomic layer deposition technique resulted in the SnO2 core/ZnO shell structure. The photoluminescence of the ZnO-coated products exhibited broad bands in the UV and green region, suggesting a possible contribution of the emission from the ZnO outlayers.  相似文献   

10.
Hall measurements are reported for undoped and Zn-doped vapor-grown single crystal GaN on (0001) Al2O3 layers with 298 K carrier concentrations (n-type) between 1·4×1017cm?3 and 9×1019 cm?3. Then n~1017 cm?3 crystals (undoped) have mobilities up to μ~440 cm2/V sec at 298 K. Their conduction behavior can be described by a two-donor model between 150 and 1225 K and by impurity band transport below 150 K. Crystals with n≥8×1018 cm?3 show metallic conduction with no appreciable variation in n or μ between 10 and 298 K.Results of mass spectrographic analyses indicate that the total level of impurities detected is too low to account for the observed electron concentration at the n~1019 cm?3 level, and suggest the presence of a high concentration of native donors in these crystals. No significant reduction in carrier concentration was achieved with Zn doping up to concentrations of ~1020 cm?3 under the growth conditions of the present work, and no evidence was found to indicate that high conductivity p-type behavior may be achieved in GaN. The influence of factors such as growth rate, crystalline perfection and vapor phase composition during growth on the properties of the layers is described.  相似文献   

11.
One-dimensional (1D) cadmium sulphide (CdS) nanostructures, including micro/nanorods, and nanostructures resembling flowers and cactus have been synthesized by electrochemical template deposition technique, using polycarbonate membranes, by controlling various reaction parameters. These 1D CdS nanostructures were characterized structurally through the X-ray diffraction (XRD) studies and morphologically through scanning electron microscopy (SEM). It was found that apart from the dimensions of the pores of the templates, the geometrical morphologies of the CdS 1D nanostructures were significantly influenced by the synthesizing parameters also. The optical characterization has been done by UV–visible absorption and room-temperature photoluminescence (PL) studies.  相似文献   

12.
One-dimensional (1D) cadmium sulphide (CdS) nanostructures, including micro/nanorods, and nanostructures resembling flowers and cactus have been synthesized by electrochemical template deposition technique, using polycarbonate membranes, by controlling various reaction parameters. These 1D CdS nanostructures were characterized structurally through the X-ray diffraction (XRD) studies and morphologically through scanning electron microscopy (SEM). It was found that apart from the dimensions of the pores of the templates, the geometrical morphologies of the CdS 1D nanostructures were significantly influenced by the synthesizing parameters also. The optical characterization has been done by UV–visible absorption and room-temperature photoluminescence (PL) studies.  相似文献   

13.
G. L. Huang 《哲学杂志》2013,93(24):3689-3707
The use of molecular dynamics (MD) to model and analyze the properties of nanostructured materials is very heavy on computing time. In this paper, the framework of continuum theory is extended so that it can capture the properties which are connected to the microstructure or nanostructure, but still maintain its simplicity and efficiency. The key step in this approach is the establishment of a relationship between the local kinematics and the global continuum variables. The developed model is capable of accounting for local deformation of micro/nanostructures. Propagations of harmonic waves of different wavelengths in layered media and lattice systems are considered and the resulting dispersion curves are used to evaluate the accuracy of the continuum model. The model is also employed to study wave reflection and transmission at the boundary of two media with different micro/nanostructures.  相似文献   

14.
Graphene on gallium nitride(GaN) will be quite useful when the graphene is used as transparent electrodes to improve the performance of gallium nitride devices. In this work, we report the direct synthesis of graphene on GaN without an extra catalyst by chemical vapor deposition. Raman spectra indicate that the graphene films are uniform and about 5–6 layers in thickness. Meanwhile, the effects of growth temperatures on the growth of graphene films are systematically studied, of which 950℃ is found to be the optimum growth temperature. The sheet resistance of the grown graphene is 41.1Ω/square,which is close to the lowest sheet resistance of transferred graphene reported. The mechanism of graphene growth on GaN is proposed and discussed in detail. XRD spectra and photoluminescence spectra indicate that the quality of GaN epi-layers will not be affected after the growth of graphene.  相似文献   

15.
Zinc oxide nanostructured films were grown by the aqueous chemical growth technique using equimolar aqueous solutions of zinc nitrate and hexamethylenetetramine as precursors. Silicon(100) and glass substrates were placed in Pyrex glass bottles with polypropylene autoclavable screw caps containing the precursors described above, and heated at 95 C for several hours. X-ray diffraction 2θ/θ scans showed that the only crystallographic phase present was the hexagonal wurtzite structure. Scanning electron microscopy showed the formation of flowerlike ZnO nanostructures, consisting of hexagonal nanorods with a diameter of a few hundred nanometers. The photoluminescence spectra of the ZnO nanostructures were recorded at 18–295 K using a cw He–Cd laser (325 nm) and a pulsed laser (266 nm). The ZnO nanostructures exhibit an ultraviolet emission band centered at 3.192 eV in the vicinity of the band edge, which is attributed to the well-known excitonic transition in ZnO.  相似文献   

16.
17.
One-dimensional (1D) and quasi-1D ZnO nanostructures have been fabricated by a kind of new spray-pyrolysis-assisted thermal evaporation method. Pure ZnO powder serves as an evaporation source. Thus-obtained products have been characterized by X-ray diffraction (XRD) analysis, scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM). The room temperature photoluminescence spectrum of these ZnO nanostructures is presented. The results show that as-grown ZnO nanomaterials have a hexagonal wurtzite crystalline structure. Besides nanosaws, nanobelts and nanowires, complex ZnO nanotrees have also been observed in synthesized products. The study provides a new simple route to construct 1D and quasi-1D ZnO nanomaterials, which can probably be extended to fabricate other oxide nanomaterials with high melting point and doped oxide nanomaterials.  相似文献   

18.
The growth of crystalline gallium nitride during chloride-hydride vapor epitaxy in a vertical reactor is numerically simulated. The effects of a break in the stability of the gas flow and the related changes in the crystal growth characteristics are analyzed; these changes are caused by changes in the flow rates of the gas components and in the crystal position with respect to the source of gallium. Free concentrational convection is found to substantially affect the crystal growth rate distribution over the crystal surface.  相似文献   

19.
We introduce the first domestic in-situ multi-information measurement system for a gallium nitride (GaN) photocathode. This system can successfully fulfill heat cleaning and activation for GaN in an ultrahigh vacuum environment and produce a GaN photocathode with a negative electron affinity (NEA) status. Information including the heat cleaning temperature, vacuum degree, photocurrent, electric current of cesium source, oxygen source, and the most important information about the spectral response, or equivalently, the quantum efficiency (QE) can be obtained during preparation. The preparation of a GaN photocathode with this system indicates that the optimal heating temperature in a vacuum is about 700 ℃. We also develop a method of quickly evaluating the atomically clean surface with the vacuum degree versus wavelength curve to prevent possible secondary contamination when the atomic level cleaning surface is tested with X-ray photoelectron spectroscopy. The photocurrent shows a quick enhancement when the current ratio between the cesium source and oxygen source is 1.025. The spectral response of the GaN photocathode is flat in a wavelength range from 240 nm to 365 nm, and an abrupt decline is observed at 365 nm, which demonstrates that with the it in-situ multi-information measurement system the NEA GaN photocathode can be successfully prepared.  相似文献   

20.
Growing graphene on gallium nitride (GaN) at temperatures greater than 900°C is a challenge that must be overcome to obtain high quality of GaN epi-layers. We successfully met this challenge using C2H2 as the carbon source. We demonstrated that graphene can be grown both on copper and directly on GaN epi-layers. The Raman spectra indicated that the graphene films were about 4–5 layers thick. Meanwhile, the effects of the growth temperature on the growth of the graphene films were systematically studied, and 830°C was found to be the optimum growth temperature. We successfully grew high-quality graphene films directly on gallium nitride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号