首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The authors recently developed a high-frequency pulsed plasma process for methane conversion to acetylene and hydrogen using a co-axial cylindrical (CAC) type of reactor. The energy efficiency represented by methane conversion rate per unit input energy has been improved so that such a pulsed plasma has potential for commercial acetylene production. A pulsed plasma consists of a pulsed corona discharge and a pulsed spark discharge. Most of energy is injected over the duration of the pulsed spark discharge. Methane conversion using this kind of pulsed plasma is a kind of pyrolysis enhanced by the pulsed spark discharge. In this study, a point-to-point (PTP) type of reactor that can produce a discharge channel over the duration of a pulse discharge was used for the pulsed plasma conversion of methane. The energy efficiency and carbon formation on electrodes have been improved. The influences of pulse frequency and pulse voltage on methane conversion rate and product selectivity were investigated. The features of methane conversion using PTP and CAC reactors were discussed.  相似文献   

2.
Pulsed atmospheric glow plasma, sustained by corona discharge, was utilized to convert methane. Analysis by gas chromatography showed that hydrogen and C2-products are the main constituents of outlet mixture while C2+-products with small concentrations were also detected. The chemical energy efficiency turned out to be about 9% for the best result obtained by this type of reactor. It has been shown that more improvement of energy efficiency is possible by increasing the pulse repetition rate.  相似文献   

3.
Kinetic Modeling of Plasma Methane Conversion Using Gliding Arc   总被引:3,自引:0,他引:3       下载免费PDF全文
Plasma methane (CH4) conversion in gliding arc discharge was examined. The result data of experiments regarding the performance of gliding arc discharge were presented in this paper. A simulation which is consisted some chemical kinetic mechanisms has been provided to analyze and describe the plasma process. The effect of total gas flow rate and input frequency refers to power consumption have been studied to evaluate the performance of gliding arc plasma system and the reaction mechanism of decomposition.Experiment results indicated that the maximum conversion of CH4 reached 50% at the total gas flow rate of 1 L/min. The plasma reaction was occurred at the atmospheric pressure and the main products were C (solid), hydrogen, and acetylene (C2H2). The plasma reaction of methane conversion was exothermic reaction which increased the product stream temperature around 30~50℃.  相似文献   

4.
微波复合直流等离子体转化天然气制乙炔的研究   总被引:4,自引:0,他引:4  
利用微波复合直流等离子体对天然气转化制乙炔反应进行了研究. 考察了氢烷比、气体流量、功率等参数对装置的能量利用率以及天然气转化反应的影响, 并考核了微波复合直流等离子体转化天然气制乙炔工艺的稳定性. 实验结果表明: 微波复合直流等离子体装置的能量利用率随等离子体工作气体的流量的增加而提高; 由于微波的作用使传统直流柱状等离子体分化为多根丝状等离子体, 从而使得电极的烧蚀方式由传统的点烧蚀变为面烧蚀, 并大幅度提高等离子体转化天然气工艺的稳定性和电极寿命; 甲烷的转化率和乙炔的收率随功率的增加而提高, 随CH4/H2比和气体流量的增加而降低, 在氢烷比为0.9、总气体流量为760 L/min、微波源输出电功率6 kW、直流电源输出功率90 kW时, 甲烷转化率可达84.4%, 乙炔选择性为75.6%, 乙炔收率为63.8%, 乙炔能耗达10.8 kWh•kg-1; 电极寿命超过200 h.  相似文献   

5.
The direct non-oxidative conversion of methane to higher hydrocarbons in non-thermal plasma, namely dielectric barrier discharge and corona discharge, has been investigated experimentally at atmospheric pressure. In dielectric barrier discharge, the methane is mainly converted to ethane and propane with small amounts of unsaturated and higher hydrocarbons. While in corona discharge, methane was activated mainly to acetylene with small amount of other higher hydrocarbons. Decreasing the gas flow or increasing power input will improve the methane conversion and product yields. It is found that the methane conversion and main product yield against the input specific energy were special functions in both dielectric barrier discharge and corona discharge, independent of the reactor size, and whether fixing flow rate or power input and changing the power input or flow rate. The corona discharge is a promising alternative method for methane conversion to produce acetylene and hydrogen at low temperature.  相似文献   

6.
采用刀片式不锈钢电极放电反应器,以Ar气为稀释气,研究了等离子体作用下甲烷转化制C2烃的工艺条件。考察了CH4流量、高频电源输入电压和电极间距等参数对甲烷转化率、C2烃选择性、收率和反应表观能耗的影响。结果表明,增加CH4流量,表观能耗随之降低;当输入电压和电极间距较小时,甲烷转化率随输入电压和电极间距的增大而增大,但输入电压和电极间距过大时,C2烃收率明显下降,积碳严重。在CH4流量14 mL/min、Ar气流量60 mL/min、高频电源输入电压22 V、电流0.44 A、电极间距4 mm的优化条件下,甲烷最高转化率为43.1%,C2烃收率、选择性和表观能耗分别为40.1%、93.2%和2.41 MJ/mol。C2烃中不饱和烃的体积分数可达95%以上。  相似文献   

7.
The direct non-oxidative conversion of methane to higher hydrocarbons in dielectric barrier discharges has been investigated theoretically at atmospheric pressure. Preliminary modeling of the results is presented, based on a well-stirred reactor model to determine the spatially and time-averaged species composition through the solution of balance equations for species, mass, gas and electron energy. The results show good quantitative agreement between model predications and experimental measurements by considering the glow and after-glow regions. Moreover, the model has predicted that there exists a transition where the main product of ethane will transform to acetylene by increasing the specific energy. The dominant reaction paths and the possibility of selective to C2 hydrocarbons have been discussed. A list of gas-phase reactions has been compiled for modeling methane conversion in non-thermal plasma and can be employed in more sophisticated two- or three-dimensional plasma simulations.  相似文献   

8.
甲烷直接转化研究进展   总被引:5,自引:0,他引:5  
王华  刘中民 《化学进展》2004,16(4):593-602
本文对甲烷直接活化转化制化学品进行了综述,详细介绍了甲烷部分氧化制C1含氧化合物、甲烷氧化偶联制乙烯和乙烷以及甲烷无氧芳构化的最新研究进展.  相似文献   

9.
The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.  相似文献   

10.
Conversion of Methane to C2 Hydrocarbons via Cold Plasma Reaction   总被引:1,自引:0,他引:1  
Direct conversion of methane to C2 hydrocarbons via cold plasma reaction with catalysts has been studied at room temperature and atmospheric pressure. Methane can be converted into C2 hydrocarbons in different selectivity depending on the form of the reactor, power of plasma, flow rate of methane, ratio of N2/CH4 and nature of the catalysts. The selectivity to C2 hydrocarbons can reach as high as 98.64%, and the conversion of methane as high as 60% and the yield of C2 hydrocarbons as high as 50% are obtained. Coking can be minimized under the conditions of: proper selection of the catalysts, appropriate high flow rate of inlet methane and suitable ratio of N2 to CH4. The catalyst surface provides active sites for radical recombination.  相似文献   

11.
在常温常压条件下 ,利用电晕放电 ,使 CH4 - CO2 混合气转化生成合成气 .结果表明 ,该过程中 CH4 和 CO2 的转化率与反应体系能量密度、原料气配比和流速等有关 .在 0 .1MPa气压 ,能量密度为 10 50 k J/ mol(反应体系温度低于 50 0 K) ,n( CH4 )∶ n( CO2 ) =1∶ 2条件下 CH4 和 CO2 的转化率分别超过 60 %和 50 % ,超出了热力学平衡转化率的限制 .通过调配原料的配比 ,可以得到不同 n( H2 ) / n( CO)比值的产物 .对该体系的反应机理进行了探讨 .  相似文献   

12.
A zeolite-enhanced plasma methane conversion with pure methane feed using dielectric-barrier discharges (DBDs) at atmospheric pressure has been conducted. This plasma methane conversion over NaX has led to a selective production of light hydrocarbons. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The principal methods for the conversion of methane into useful chemical compounds are discussed. Promising methods include direct nonoxidative dehydrocondensation of methane to aromatic hydrocarbons, oxidative coupling of methane to ethylene, and partial oxidation of methane to oxygenates. In the case of the last reaction the proposed approach makes it possible to compare precisely the selective action of heterogeneous catalysts and to predict that a maximum yield will be obtained in a flow-type reactor with recycling.  相似文献   

14.
甲烷催化转化为高附加值产物、实现甲烷高效利用,具有重要的研究意义及工业应用价值。长期以来,如何在较温和的条件下将甲烷转化为其它更有价值的有机衍生物,如醇、芳烃、长链烷烃和烯烃等,是催化、化学及化工领域的热点和难点课题之一。光催化反应由光能激发产生光生电子和空穴,参与到甲烷C―H键活化和自由基形成,这为低温甲烷转化提供新的途径,本文主要围绕甲烷氧化和偶联反应,总结了近年来光催化研究进展,并对如何进一步提高光催化性能提出展望。  相似文献   

15.
膜反应器中的甲烷转化反应   总被引:3,自引:0,他引:3  
用EDTA-柠檬酸联合络合法合成了Ba0.5Sr0.5Co0.8Fe0.2O3-δ混合导体透氧膜材料,并考察了膜片本身对甲烷的活化性能,结果表明,导体膜对甲烷氧化偶联(OCM)反应具有催化活性,研究了膜反应器中甲烷部分氧化(POM)制合成气反应,发现在开始阶段甲烷转化率有两次快速升高,第一次是由于甲烷与二氧化碳重整而产生的;第二次是由于透氧量增加而导致的,透氧量随温度的升高而增加,850℃时甲烷转  相似文献   

16.
甲烷二氧化碳转化制备富含一氧化碳合成气   总被引:9,自引:1,他引:9  
研究了甲烷二氧化碳转化反应的热力学特性,计算了反应平衡常数及平衡组成,分析和确定了抑制积碳的生成条件,采用固定床流动和脉冲反应装置研究了Ni/Al_2O_3催化剂对甲烷二氧化碳转化的催化性能。  相似文献   

17.
Direct conversion of methane to methanol is an effective and practical process to improve the efficiency of natural gas utilization. Copper (Cu)-based catalysts have attracted great research attention, due to their unique ability to selectively catalyze the partial oxidation of methane to methanol at relatively low temperatures. In recent decades, many different catalysts have been studied to achieve a high conversion of methane to methanol, including the Cu-based enzymes, Cu-zeolites, Cu-MOFs (metal-organic frameworks) and Cu-oxides. In this mini review, we will detail the obtained evidence on the exact state of the active Cu sites on these various catalysts, which have arisen from the most recently developed techniques and the results of DFT calculations. We aim to establish the structure–performance relationship in terms of the properties of these materials and their catalytic functionalities, and also discuss the unresolved questions in the direct conversion of methane to methanol reactions. Finally, we hope to offer some suggestions and strategies for guiding the practical applications regarding the catalyst design and engineering for a high methanol yield in the methane oxidation reaction.  相似文献   

18.
The underlying mechanism for non‐oxidative methane aromatization remains controversial owing to the lack of experimental evidence for the formation of the first C?C bond. For the first time, the elementary reaction of methane with atomic clusters (FeC3?) under high‐temperature conditions to produce C?C coupling products has been characterized by mass spectrometry. With the elevation of temperature from 300 K to 610 K, the production of acetylene, the important intermediate proposed in a monofunctional mechanism of methane aromatization, was significantly enhanced, which can be well‐rationalized by quantum chemistry calculations. This study narrows the gap between gas‐phase and condensed‐phase studies on methane conversion and suggests that the monofunctional mechanism probably operates in non‐oxidative methane aromatization.  相似文献   

19.
常压辉光放电等离子体转化CH4制C2烃的研究   总被引:3,自引:0,他引:3  
王达望  马腾才 《化学学报》2006,64(11):1121-1125
采用新型的旋转电极辉光放电反应器, 在常温常压下对辉光等离子体作用下的甲烷转化制C2烃进行了研究. 在氢气共存条件下, 考察了反应器电极的结构、材料, 输入电场峰值电压和反应物流率等参数对甲烷转化率和C2烃单程收率及其选择性的影响规律, 同时比较了不同反应器的能量效率. 结果表明: 在本实验条件下, 金属铜材料好于不锈钢, 螺旋形结构优于三排圆盘结构. CH4转化率和C2烃选择性和收率均随输入电场峰值电压的升高而增大, 随反应物流量的增加而减小. 从CH4转化率、C2烃的收率和选择性的指标来评价这些反应器, 采用旋转螺旋状铜电极反应器时最好, 当反应物流量为60 mL/min时, 甲烷最高转化率为77.31%, 对应的C2烃收率和选择性分别为75.66%和97.88%; 当能量密度为800 kJ/mol时, 能效最高为13.5%.  相似文献   

20.
Experiments are performed to develop a pulsed corona discharge system for the conversion ofmethane to hydrogen at atmospheric pressure (≌760 Torr) without using a catalyst. The corona dischargewas energized by 10-12 μs wide voltage pulses (≤7 kV) at a repetition rate of about 1.0-1.5 kHz. Theresidual gases were characterized by mass spectrometry. The conversion of methane is as high as 50.8% producing the 70% yield of hydrogen. The influences of argon on the discharge of methane were studied.This result could be useful for the mass production of hydrogen in both academic and industrial point ofview.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号